Skip to main content
Log in

Analysis of nonisothermal sintering of zinc-titanate ceramics doped with MgO

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

The aim of this work is to analyze nonisothermal sintering of zinc titanate ceramics doped with MgO obtained by mechanical activation. Mixtures of ZnO, TiO2, and MgO (0, 1.25, and 2.5%) are mechanically activated for 15 min in a planetary ball mill. Nonisothermal sintering is performed in air for 120 min at 800, 900, 1000, and 1100 °C. Microstructure parameters are revealed from an approximation method. Structural characterization of ZnO-TiO2-MgO system after milling is performed at room temperature using XRPD measurements. The main conclusions are that mechanical activation leads to the particle size reduction, the increase of dislocation density, and lattice strain. Doped zinc titanate samples achieve higher densities after sintering and the diffusion mechanism is dominant during the sintering process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. T. Kim, Y. Kim, M. Valant, and D. Suvorov, “Titanium incorporation in Zn2TiO4 spinel ceramics,” J. Am. Ceram. Soc., 84, 1081 (2001).

    CAS  Google Scholar 

  2. J. H. Swisher, J. Yang, and R. P. Gupta, “Attrition-resistant zinc titanate sorbent for sulphur,” Ind. Eng. Chem. Res., 34, 4463 (1995).

    Article  CAS  Google Scholar 

  3. H. T. Kim, J. D. Byun, and Y. H. Kim, “Microstructure and microwave dielectric properties of modified zinc titanates (I),” Mater. Res. Bull., 33, 963 (1998).

    Article  CAS  Google Scholar 

  4. H. T. Kim, J. D. Byun, and Y. H. Kim, “Microstructure and microwave dielectric properties of modified zinc titanates (II),” Mater. Res. Bull., 33, 975 (1998).

    Article  CAS  Google Scholar 

  5. H. T. Kim, S. H. Kim, S. Nahm, et. al., “Low temperature sintering and microwave dielectric properties of zinc metatitanate-rutile mixtures using boron,” J. Am. Ceram. Soc., 82, 3043 (1999).

    CAS  Google Scholar 

  6. H. T. Kim, S. Nahm, J. D. Byun, and Y. H. Kim, “Low-fired (Zn, Mg)TiO3 microwave dielectrics,” J. Am. Ceram. Soc., 82, 3476 (1999).

    CAS  Google Scholar 

  7. X. C. Liu, F. Gao, L. L. Zhao, and C. S. Tian, “Low-temperature sintering and phase transition of zinc titanate ceramics with V2O5 and B2O3 addition,” J. Alloys Comp., 436, 285 (2007).

    Article  CAS  Google Scholar 

  8. F. H. Dulin and D. E. Rase, “Phase equilibria in the system ZnO-TiO2,” J. Am. Ceram. Soc., 43, 125 (1960).

    Article  CAS  Google Scholar 

  9. S. F. Bartram and R. A. Slepetys, “Compound formation and crystal structure in the system ZnO-TiO2,” J. Am. Ceram. Soc., 44, 493 (1961).

    Article  Google Scholar 

  10. O. Yamaguchi, M. Morimi, H. Kawabata, and K. Shimizu, “Formation and transformation of ZnTiO3,” J. Am. Ceram. Soc., 70, C97 (1987).

    Google Scholar 

  11. Y. S. Chang, Y. H. Chang, I. G. Chen, et al., “Synthesis and characterization of zinc titanate nano-crystal powders by sol-gel technique,” J. Cryst. Growth, 243, 319 (2002).

    Article  CAS  Google Scholar 

  12. J. Yang and J. H. Swisher, “The phase stability of Zn2Ti3O8,” Mater. Charact., 37, 153 (1996).

    Article  CAS  Google Scholar 

  13. Y. R. Wang, S. F. Wang, and Y. M. Lin, “Low-temperature sintering of (Zn1−x Mgx)TiO3 microwave dielectrics,” Ceram. Internat., 31, 905 (2005).

    Article  CAS  Google Scholar 

  14. Y. S. Chang, Y. H. Chang, I. G. Chen, and G. J. Chen, “Synthesis and characterization of zinc titanate doped with magnesium,” Solid St. Commun., 128, 203 (2003).

    Article  CAS  Google Scholar 

  15. Y. S. Chang, Y. H. Chang, I. G. Chen, et al., “The structure and properties of zinc titanate doped with strontium,” J. Alloys Comp., 354, 303 (2003).

    Article  CAS  Google Scholar 

  16. X. Liu et al., Synthesis, low-temperature sintering and the dielectric properties of the Zn-(1−x)TiO2-xSnO2 (x = 0.04–0.2),” Mater. Res. Bull. (2007), doi:10.1016/j.materresbull.2007.03.029.

  17. S. K. Manik, P. Bose, and S. K. Pradhan, “Microstructure characterization and phase transformation kinetics of ball-milled prepared nanocrystalline Zn2TiO4 by Rietveld method,” Mater. Chem. Phys., 82, 837 (2003).

    Article  CAS  Google Scholar 

  18. N. Obradovic, N. Labus, T. Sreckovic, and M. M. Ristic, “Dilatometer investigations of reactive sintering of zinc titanate ceramics,” Mat. Sci. Forum, 494, 411 (2005).

    CAS  Google Scholar 

  19. T. Sreckovic, N. Labus, N. Obradovic, Lj. Zivkovic, “Enhancing synthesis and sintering of zinc titanate using mechanical activation,” Mat. Sci. Forum, 435, 453–454 (2004).

    Google Scholar 

  20. Lj. Karanovic, Applied Crystallography [in Serbian], Belgrade University, Belgrade (1996).

    Google Scholar 

  21. N. Obradovic, N. Labus, T. Sreckovic, and M. M. Ristic, “The influence of tribophysical activation on Zn2TiO4 synthesis,” Mat. Sci. Forum, 518, 131 (2006).

    Article  CAS  Google Scholar 

  22. N. Obradovic, S. Stevanovic, M. Mitric, et al., “Analysis of isothermal sintering of zinc-titanate doped with MgO,” Sci. Sint., 39, 241 (2007).

    Article  CAS  Google Scholar 

  23. D. Lance, F. Valdivieso, and P. Goeuriot, “Correlation between densification rate and microstructural evolution for pure alpha alumina,” J. Eur. Ceram. Soc., 24, 2749 (2004).

    Article  CAS  Google Scholar 

  24. O. Gillia and D. Bouvard, “Phenomenological analysis of densification kinetics during sintering: application on WC-Co mixture,” Mat. Sci. Eng. A., 279, 185 (2000).

    Article  Google Scholar 

  25. M. V. Nikolic, N. Labus, and M. M. Ristic, “A phenomenological analysis of sintering kinetics from the viewpoint of activated volume,” Sci. Sint., 37, 19 (2005).

    Article  CAS  Google Scholar 

  26. J. L. Woolfrey, “Nonisothermal techniques for studying initial-stage sintering,” J. Am. Ceram. Soc., 55, 383 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Poroshkovaya Metallurgiya, Vol. 47, No. 1–2 (459), pp. 83–90, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obradovic, N., Stevanovic, S. & Ristic, M.M. Analysis of nonisothermal sintering of zinc-titanate ceramics doped with MgO. Powder Metall Met Ceram 47, 63–69 (2008). https://doi.org/10.1007/s11106-008-0010-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-008-0010-7

Keywords

Navigation