Skip to main content
Log in

Configuration model of matter and its role in theoretical science of materials

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

The major principles of Samsonov’s quasichemical configuration model are discussed in terms of the many-electron theory of condensed systems. It is shown that the interrelation between the order of the s-and d-levels in isolated atoms of transition elements and the occupation of the corresponding bands in metals can be interpreted with quasiparticle theory that takes the d-d-and s-d-electronic correlations into account more accurately than ordinary one-electron theory does.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Ristic, L. F. Pryadko, and A. M. Marichich, Prognosis of Materials Based on the Configurational Model of Solid, Center for Multidisciplinary of the Belgrade University, Institute of Technical Science of SASA (1997), p. 86.

  2. J. C. Slater, Insulators, Semiconductors, and Metals, McGraw-Hill Company, New York (1967), p. 645.

    Google Scholar 

  3. J. Hubbard, “Electron correlations in narrow bands,” Proc. Roy. Soc., A276, 238–249 (1963).

    Google Scholar 

  4. S. Lundqist and N. H. March (ed.), Theory of the Inhomogeneous Electron Gas, Plenum Press, New York (1983), p. 367.

    Google Scholar 

  5. W. A. Harrison, Solid State Theory, McGraw-Hill Company, New York (1970), p. 416.

    Google Scholar 

  6. L. Brewer, “Stability of metal structures,” in: P. S. Rudman (ed.), Phase Stability in Metals and Alloys, McGraw-Hill, New York (1967), pp. 216–235.

    Google Scholar 

  7. G. V. Samsonov, I. F. Pryadko, and L. F. Pryadko, A Configurational Model of Matter, New York (1973), p. 324.

  8. A. R. Miedema, “A model of transition metal alloys,” J. Phys. (F), 3, 1803–1818 (1973).

    Article  CAS  Google Scholar 

  9. G. N. Hatsopoulos and J. H. Keeman, Principles of General Thermodynamics, J. Willey, New York (1965).

    Google Scholar 

  10. G. V. Samsonov, I. F. Pryadko, and L. F. Pryadko, Electron Localization in Solid Body [in Russian], Nauka, Moscow (1976), p. 362.

    Google Scholar 

  11. S. A. Shchukarev, Inorganic Chemistry [in Russian], Vol. 2, Vysshaya Shkola, Moscow (1970), p. 368.

    Google Scholar 

  12. H. A. Bethe, Intermediate Quantum Mechanics, W. A. Benjamin Inc., New York (1964), p. 284.

    Google Scholar 

  13. J. Slater, The Self-Consistent Field for Molecules and Solids, McGraw-Hill, New York (1974), p. 642.

    Google Scholar 

  14. G. V. Samsonov, “Role of stable electron configurations in forming the properties of chemical elements and compounds,” Ukr. Khim. Zh., 31, 1233–1245 (1965).

    CAS  Google Scholar 

  15. W. Kraeft, D. Kremp, and W. Ebeling, Quantum Statistics of Charged Particle Systems, Academie-Verlag, Berlin (1986), p. 326.

    Google Scholar 

  16. J. M. Ziman, The Calculation of Bloch Function, Academic Press, New York (1972), p. 228.

    Google Scholar 

  17. L. D. Didukh, L. F. Pryadko, and I. V. Stasyuk, Correlation Effects in Narrow-Band Materials [in Russian], Vyshcha Shkola, L’vov (1978), p. 173.

    Google Scholar 

  18. E. V. Kuz’min, G. A. Petrakovskii, and É. A. Zavadskii, Physics of Magnetically Ordered Substances [in Russian], Nauka, Novosibirsk (1976), p. 312.

    Google Scholar 

  19. G. V. Loseva, S. G. Ovchinnikov, and G. A. Petrakovskii, Metal-Dielectric Transition in 3d-Metal Sulphides [in Russian], Nauka, Novosibirsk (1983), p. 196.

    Google Scholar 

  20. L. M. Falicov and J. C. Kimball, “Simple model for semiconductor-metal-transition SmB6 and transition-metal oxides,” Phys. Rev. Lett., 22, 1287–1265 (1969).

    Article  Google Scholar 

  21. R. Ramirez and L. M. Falicov, “Theory of α → γ-phase transition in metallic cerium,” Phys. Rev. B, 3, 2425–2432 (1971).

    Article  Google Scholar 

  22. É. I. Vainshtein, S. M. Blokhin, M. N. Bryl’, et al., “X-ray radiation of the valence state of rare-earth element atoms in hexaborides,” Zh. Neorg. Khim., 10, Issue 1, 121–126 (1965).

    CAS  Google Scholar 

  23. D. I. Khomskii, “Issue of intermediate valency,” Usp. Fiz. Nauk, 129, 443–468 (1979).

    CAS  Google Scholar 

  24. R. A. Grigorchuk and I. V. Stasyuk, Lattice Deformation in Crystals Described with the s(d)-f-Model [in Russian], Preprint, Inst. Teor. Fiz. AN USSR, Kiev (1980), p. 23.

    Google Scholar 

  25. P. W. Anderson, “A local magnetic state in metals,” Phys. Rev., 124, 41–52 (1961).

    Article  CAS  Google Scholar 

  26. P. A. Wolf, “A localized magnetic moments in metals,” Phys. Rev., 1030–1039.

  27. P. B. Vigman, “On the nature of Kondo states below TK,” Letters to ZhÉTF, 31, 392–398 (1980).

    Google Scholar 

  28. K. A. Kikoin, Electron Properties of Admixtures of Transition Metals in Semiconductors [in Russian], Énergoatomizdat, Moscow (1991), p. 348.

    Google Scholar 

  29. W. A. Harrison, Electronic Structure and Properties of Solids, W. H. Freeman and Company, San Francisco (1980), p. 548.

    Google Scholar 

  30. P. Rennet and G. Paasch, Der kristallische Potential, Ergebnisse in der Elektronentheorie der Metalle, Akademie-Verlag, Berlin (1983), p. 236.

    Google Scholar 

  31. V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated Electronic Properties of Metals, Pergamon Press, New York (1978), p. 378.

    Google Scholar 

  32. A. I. Lichtenstein and M. I. Katsnelson, “Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach,” Phys. Rev. B, 57, 6884–6896 (1998).

    Article  CAS  Google Scholar 

  33. M. H. Hettler, “Nonlocal dynamical correlations of strongly interacting electron systems,” Phys. Rev. B, 58, R7475–R7486.

  34. Koichi Kusakabe, “A rigorous extension of the Kohn-Sham equation for strongly correlated electron systems,” J. Phys. Soc. Jpn., Vol. 70, 2038–2048 (2001).

    Article  CAS  Google Scholar 

  35. A. P. Shpak, Yu. A. Kunitskii, and V. L. Karbovskii, Clusters and Nanostructured Materials [in Russian], Akademperiodika, Kiev (2001), p. 512.

    Google Scholar 

  36. A. V. Ragulya, I. I. Timofeeva, and A. I. Bykov, “Processes for obtaining highly modular materials by high pressure sintering,” in: Abstract Book of FITEM-07, Belgrade (2007), p. 15–16.

  37. D. Dyshel, I. Yeremina, E. Telnikov, and B. Rud, “Compositions without noble metals for thick film,” Sensors and Actuators, B 35–36, 244–252 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Poroshkovaya Metallurgiya, Vol. 47, No. 1–2 (459), pp. 29–36, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pryadko, L.F., Ristic, M.M. Configuration model of matter and its role in theoretical science of materials. Powder Metall Met Ceram 47, 21–25 (2008). https://doi.org/10.1007/s11106-008-0005-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-008-0005-4

Keywords

Navigation