Skip to main content
Log in

Synthesis and physicomechanical properties of B4C-VB2 composites

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

We have studied the properties of composites in the B4C-VB2-C system, obtained by reaction synthesis with hot pressing. We have established that the presence of free carbon and vanadium boride in the ceramic makes it possible to activate the sintering process and to obtain a dense, highly dispersed ceramic with good structural homogeneity parameters for lower isothermal holding temperatures. The composite ceramic has higher hardness and bending strength over a broad range of vanadium boride content than the monophase ceramic based on boron carbide. The strength properties of the composite ceramic containing up to 8 vol.% vanadium boride are improved by means of a mechanism involving propagating cracks bending around obstacles. When the VB2 concentration increases further, the properties of the composite are determined by a microcracking mechanism. In this case, we observe relatively small changes in the elastic characteristics, which depend linearly on the composition of the ceramic. Introducing vanadium boride into the material is also accompanied by an increase in the contact and microstructural strengths. The results obtained indicate that the new composite material is promising for fabricating wear-resistant and shock-resistant components of various structures and machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Thevenot and M. Bougoin, “Pressureless sintering of boron carbide phase in boron rich solids,” in: Conference Proceedings 140, American Institute of Physics, New York (1986), pp. 51–58.

    Google Scholar 

  2. S. Dole and S. Prochazka, “Densification and microstructure development in boron carbide,” Ceram. Eng. Sci. Proc., 6, 1151–1160 (1985).

    Article  CAS  Google Scholar 

  3. D. Radev and Z. Zachariev, “Structural and mechanical properties of activated sintered boron carbide-based materials,” J. Solid State Chem., 137, 1–5 (1998).

    Article  CAS  Google Scholar 

  4. L. S. Sigl, “Processing and mechanical properties of boron carbide sintered with TiC,” J. Europ. Ceram. Soc., 18, 1521–1529 (1998).

    Article  CAS  Google Scholar 

  5. O. N. Grigor’ev, V. V. Koval’chuk, V. V. Zametailo, et al., “Structure, physicomechanical properties, and fracture characteristics of boron carbide-based ceramic,” Poroshk. Metall., No. 7, 38–43 (1990).

    Google Scholar 

  6. G. G. Karyuk, V. V. Koval’chuk, A. I. Yuga, et al., “Study of the friction characteristics of hot-pressed material based on B4C,” Poroshk. Metall., No. 5, 56–60 (1988).

    Google Scholar 

  7. L. Levin, N. Frage, and M. P. Dariel, “The effect of Ti and TiO2 additions on the pressureless sintering of B4C,” Metall. Trans., 30A, 3201–3210 (1999).

    CAS  Google Scholar 

  8. V. Skorokhod, D. Vlajis, and V. D. Kristic, “Mechanical properties of pressureless sintered boron carbide containing TiB2 phase,” J. Mater. Sci. Lett., 15, 1337–1339 (1966).

    Google Scholar 

  9. M. K. Aghajanian, B. N. Morgan, I. R. Singh, et al., “A new family of reaction bonded ceramics for armor applications,” in: Ceramic Armor Materials by Design, J. W. McCauley, et al. (eds.), Amer. Ceram. Soc., Westerville OH (2002), Vol. 134, pp. 527–539.

    Google Scholar 

  10. P. S. Kislyi, M. A. Kurenkova, N. I. Bodnaruk, and B. L. Grabchuk, Boron Carbide [in Russian], Nauk. Dumka, Kiev (1988).

    Google Scholar 

  11. A. L. Yurkov, A. M. Starchenko, and B. S. Skidan, “Reaction sintering of boron carbide,” Ogneurpory, No. 12, 14–18 (1989).

  12. B. A. Galanov, O. N. Grigoriev, Yu. V. Milman, and V. I. Trefilov, “Ceramic-matrix composites: theoretical fundamentals,” Ceramic and Carbon-Matrix Composites, V. I. Trefilov (ed.), Chapman and Hall, London (1995), pp. 1–29.

    Google Scholar 

  13. K. A. Schwetz, L. S. Sigl, and L. Phan, “Mechanical properties of injection molded B4C-C ceramics,” J. Solid State Chem, 133, 68–76 (1977).

    Article  Google Scholar 

  14. A. V. Bochko and O. I. Zaporozhets, “Elastic constants and elastic moduli of cubic and wurtzitic boron nitride,” Powder Metal. Met. Ceram., No. 7–8, 417–423 (1996).

  15. O. I. Zaporozhets, A. V. Lichko, V. V. Nemoshkalenko, et al., “A technology for non-destructive testing of metalworks,” Met. Phys. Adv. Techn., 17, 961–971 (1999).

    Google Scholar 

  16. B. A. Galanov, O. N. Grigor’ev, and E. G. Trunova, “Contact strength and statistical mechanics of fracture in ceramic,” Élektronnaya Mikroskopiya i Prochnost’ Materialov, No. 11, 68–76 (2001).

  17. B. A. Galanov, O. N. Grigoriev, and S. M. Ivanov, “Response of ceramics to hypervelocity impact loading,” in: Extreme Loading 2003: Proceedings, International Conference (August 3–6, 2003), Toronto (2003).

  18. G. N. Makarenko, V. B. Fedorus, S. P. Gordienko, et al., “Reaction of boron carbide with period IV metal oxides,” Poroshk. Metall., Nos. 9–10, 8–11 (1995).

  19. É. V. Marek and G. N. Makarenko, “Reaction of boron carbide with titanium and zirconium oxides,” in: High-Temperature Carbides [in Russian], Nauk. Dumka, Kiev (1975), pp. 122–124.

    Google Scholar 

  20. L. Levin, N. Frage, and M. P. Dariel, “A novel approach for preparation of B4C-based cermets,” Int. J. Refractory Met. Hard Mat., 18, 131–135 (2000).

    Article  CAS  Google Scholar 

  21. O. N. Grigor’ev, “Study of the plastic and strength properties of ultrahard materials by microindentation methods,” Poroshk. Metall., No. 1, 74–84 (1982).

  22. O. N. Grigor’ev, V. I. Trefilov, and A. N. Shatokhin, “Effect of the structural state of brittle materials on the load dependence of the hardness,” Dokl. Akad. Nauk SSSR, 259, No. 4, 836–840 (1981).

    Google Scholar 

  23. O. N. Grigoriev, Y. G. Gogotsi, V. I. Subbotin, and V. V. Koval’chuk, “Structure and properties of SiC-TiB2 ceramics,” J. Mater. Proc. Manufact. Sci., 7, No. 1, 99–110 (1998).

    Article  CAS  Google Scholar 

  24. O. N. Grigor’ev, V. I. Subbotin, G. A. Gogotsi, et al., “Synthesis and properties of SiC-B4C-MeB2 ceramic,” Poroshk. Metall., Nos. 5–6, 29–36 (2000).

  25. O. N. Grigor’ev, G. L. Zhunkovskii, V. A. Kotenko, et al., “Resistance of ceramic and metal ceramic materials to abrasive and gas-abrasive wear conditions,” Vest. Nats. Tekhn. Univ. “Khar’kov. Politekhn. Inst.,” No. 17, 133–142 (2003).

  26. Yu. V. Kolesnikov and E. M. Morozov, Contact Fracture Mechanics [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  27. S. Bless, S. Satapathy, and C. Simha, “Response of alumina ceramics to impact and penetration,” in: Structures under Shock and Impact IV, N. Jones, C. A. Brebbia, and A. J. Watson (eds.), Computational Mechanics Publications, Southampton (1996), pp. 521–532.

    Google Scholar 

  28. K. L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge (1985).

    Google Scholar 

  29. M. B. Shtern, “Theory of plasticity for porous solids and compacted powders,” in: Rheological Models and Deformation Processes for Porous, Powder, and Composite Materials [in Russian], Nauk. Dumka, Kiev (1985), pp. 12–23.

    Google Scholar 

  30. V. V. Skorokhod, “Current problems in continuum theory and structural modeling of processes of deformation for powders and porous solids,” in: Rheological Models and Deformation Processes for Porous, Powder, and Composite Materials [in Russian], Nauk. Dumka, Kiev (1985), pp. 6–11.

    Google Scholar 

  31. I. N. Bogachev, A. A. Vainshtein, and S. D. Volkov, Introduction to Statistical Metallurgy [in Russian], Metallurgiya, Moscow (1972).

    Google Scholar 

  32. G. V. Samsonov and I. M. Vinitskii, Refractory Compounds: Handbook [in Russian], Metallurgiya, Moscow (1967).

    Google Scholar 

  33. T. Ya. Kosolapova (ed.), Properties, Synthesis, and Application of Refractory Compounds: Handbook [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  34. A. R. Andrievskii and I. I. Spivak, Strength of Refractory Compounds and Materials Based on Them: Handbook [in Russian], Metallurgiya, Chelyabinsk (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Poroshkovaya Metallurgiya, Nos. 1–2(447), pp. 59–72, January–February, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigor’ev, O.N., Koval’chuk, V.V., Zaporozhets, O.I. et al. Synthesis and physicomechanical properties of B4C-VB2 composites. Powder Metall Met Ceram 45, 47–58 (2006). https://doi.org/10.1007/s11106-006-0041-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-006-0041-x

Keywords

Navigation