Skip to main content
Log in

Development of a Method for High-Temperature Shock Compression of Powder Mixtures to Obtain Cubic Boron Nitride

  • Structural Studies of Materials
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

We used shock compression of a mixture of boron nitride powder with an alkali halide salt as an additive to realize the phase transformation of turbostratic BN to the cubic modification. We have experimentally studied the effect of the type and amount of the additive and also the initial density of the mixture on the yield of the cubic phase of BN. We have roughly calculated the pressure and temperature arising upon shock compression of powder mixtures in an annular cylindrical storage ampul. We have shown that melting of the additive has a substantial effect on development of the phase transformation in boron nitride under shock loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. A. Adadurov, Z. G. Aliev, L. O. Atovmyan, et al., “Formation of a wurtzite-like modification of boron nitride under shock compression,” Dokl. Akad. Nauk SSSR, 172, No.5, 1066–1068 (1967).

    CAS  Google Scholar 

  2. L. V. Al'tshuler, M. N. Pavlovskii, and V. P. Drakin, “Characteristics of phase transformations in shock compression and unloading waves,” Zhurn. Eksp. Teor. Fiz., 52, No.2, 400–408 (1967).

    Google Scholar 

  3. N. L. Coleburn and J. W. Forbes, “Irreversible transformations of hexagonal boron nitride by shock compression,” J. Chem. Phys., 48, 555–559 (1968).

    Article  CAS  Google Scholar 

  4. A. V. Kurdyumov and A. N. Pilyankevich, Phase Transformations in Carbon and Boron Nitride [in Russian], Nauk. Dumka, Kiev (1979).

    Google Scholar 

  5. A. V. Kurdyumov, V. B. Zelyavskii, N. F. Ostrovskaya, et al., “Characteristics of the true structure of graphite-like BN and its transformation to the wurtzite modification under shock compression,” Poroshk. Metall., Nos. 9–10, 62–65 (1994).

  6. Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Processes [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  7. A. Sawaoka, T. Soma, and S. Saito, “Structural determination of boron nitride transformed by shock compression,” Jpn. J. Appl. Phys., 13, No.5, 891–892 (1974).

    Article  CAS  Google Scholar 

  8. T. Sekine and T. Sato, “Shock-induced mechanisms of phase transformation from rhombohedral BN [to] cubic BN,” J. Appl. Phys., 74, No.4, 2440–2444 (1993).

    Article  CAS  Google Scholar 

  9. N. I. Borimchuk, A. V. Bochko, V. B. Zelyavskii, et al., “Method for obtaining cubic boron nitride,” Inventor's Certificate 1594869 USSR, Otkrytiya. Izobreteniya, No. 35 (1990).

  10. N. I. Borimchuk, A. V. Kurdyumov, and V. V. Yarosh, “Characteristics of formation of dense modifications of carbon and boron nitride under shock compression conditions,” in: All-Union Conference on Detonation: Collected Reports [in Russian], Krasnoyarsk (1991), Vol. 1, pp. 43–47.

    Google Scholar 

  11. A. V. Kurdyumov, V. F. Britun, N. I. Borimchuk, et al., “Phase transformations of disordered structures of graphite-like boron nitride under high-temperature shock compression,” Poroshk. Metall., Nos. 9–10, 100–110 (2004).

  12. A. V. Kurdyumov, V. L. Solozhenko, M. Gubachek, et al., “Shock-wave synthesis of ternary diamond-like phases in the system B-C-N,” Poroshk. Metall., Nos. 9–10, 53–61 (2000).

  13. V. P. Alekseevskii, N. I. Borimchuk, N. A. Fot, and V. V. Yarosh, “Physical characteristics of the creation of high pulsed pressure by shock compression to obtain a phase transition in solids,” in: Hexanite and Hexanite-R and Tools Based on Them [in Russian], Institute for Problems of Materials Science, Academy of Sciences of the Ukrainian SSR, Kiev (1975), pp. 7–13.

    Google Scholar 

  14. A. V. Kurdyumov, N. I. Borimchuk, V. F. Britun, and V. V. Yarosh, “Physical principles of shock-wave synthesis of superhard phases and their structure,” Poroshk. Metall., Nos. 11–12, 88–97 (1999).

  15. F. A. Baum, L. P. Orlenko, K. P. Stanyukovich, et al., Physics of Explosion [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  16. A. V. Kurdyumov, V. B. Zelyavskii, N. F. Ostrovskaya, et al., “Characteristics of quantitative x-ray phase analysis of weakly absorbing powder objects with structural defects,” Poroshk. Metall., Nos. 11–12, 103–109 (1998).

  17. R. B. Schwarz, P. Kasiraj, T. Vreeland, Jr., and T. J. Ahrens, “A theory for the shock-wave consolidation of powders,” Acta Metal., 32, No.8, 1243–1252 (1984).

    Article  CAS  Google Scholar 

  18. R. W. Lynch and H. G. Drickamer, “Effect of high pressure on lattice parameters of diamond, graphite and hexagonal boron nitride,” J. Chem. Physics, 44, No.1, 181–184 (1966).

    Article  CAS  Google Scholar 

  19. L. V. Al'tshuler, “Use of shock waves in high pressure physics,” Usp. Fiz. Nauk., 85, No.2, 197–258 (1965).

    Google Scholar 

  20. L. V. Al'tshuler, K. K. Krupnikov, B. N. Ledenev, et al., “Dynamic compressibility and the equation of state for iron at high pressures,” Zhurn. Eksp. Teor. Fiz., 34, No.4, 874–885 (1958).

    Google Scholar 

  21. S. B. Kormer, M. B. Sinitsyn, G. A. Kirillov, and V. D. Urlin, “Experimental determination of the temperatures of shock compressed NaCl and KCl and their melting curves up to 700 kbar,” Zhurn. Eksp. Teor. Fiz., 48, No. 4, 1033–1048 (1965).

    CAS  Google Scholar 

  22. V. N. Zharkov and V. A. Kalinin, Equation of State for Solids at High Pressures and Temperatures [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  23. V. E. Fortov, L. V. Al'tshuler, R. V. Trunin, and A. I. Funtikov, Shock Waves and Extremal States of Matter [in Russian], Nauka, Moscow (2000).

    Google Scholar 

  24. S. B Kormer, M. V. Sinitsyn, A. I. Funtikov, et al., “Study of the compressibility of five ionic compounds to pressures of 5 Mbar,” Zhurn. Eksp. Teor. Fiz., 47, No.4, 1202–1213 (1964).

    CAS  Google Scholar 

  25. W. H. Gust, “Phase transition and shock-compression parameters to 120 GPa for three types of graphite and for amorphous carbon,” Physical Review B, 22, No.10, 4744–4756 (1980).

    Article  CAS  Google Scholar 

  26. L. V. Al'tshuler, M. N. Pavlovskii, L. V. Kuleshova, and G. V. Simakov, “Study of alkali metal halides at high pressures and temperatures of shock compression,” Fizika Tverdogo Tela, 5, No.1, 279–290 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Poroshkovaya Metallurgiya, Nos. 7–8(444), pp. 107–118, July–August, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Britun, V.F., Kurdyumov, A.V., Borimchuk, N.I. et al. Development of a Method for High-Temperature Shock Compression of Powder Mixtures to Obtain Cubic Boron Nitride. Powder Metall Met Ceram 44, 396–406 (2005). https://doi.org/10.1007/s11106-005-0109-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-005-0109-z

Keywords

Navigation