Skip to main content
Log in

Characteristics and Plasmochemical Deposition of Coatings Based on Amorphous Hydrogenated Silicon Carbide

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

The effects of major technological parameters in plasmochemical deposition have been examined as regards the properties of thin-film coatings based on amorphous hydrogenated silicon carbide (a-SiC : H) formed by the use of methyltrichlorosilane. Effects have been established from the substrate temperature, discharge power, and pressure of the reagent gases in the reaction chamber on the plasma performance. The films have been examined by secondary mass spectroscopy, and by infrared and optical spectroscopy, as well as by hardness testing by nanoindentation. Films based on amorphous hydrogenated silicon carbide can be used as wear-resistant coatings for metal-cutting tools and as active layers in semiconductor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Bullot and M. P. Schmidt, “Physics of amorphous silicon-carbon alloys,” Phys. Stat. Sol. (b), 143, 345–418 (1987).

    CAS  Google Scholar 

  2. L. Calcagno, A. Hallen, R. Martins, and W. Skorupa (eds.), Amorphous and Crystalline Silicon Carbide: Materials and Applications, Elsevier, Amsterdam (2001).

    Google Scholar 

  3. N. Kenji, U. Shoichi, K. Minoru, et al., “NMR and IR studies on hydrogenated amorphous Si1−x C x films,” Jpn. J. Appl. Phys., 21, L176–L178 (1982).

    Google Scholar 

  4. Z. C. Feng, A. Rohatgi, C. C. Tin, et al., “Structural, optical, and surface science studies of 4H-SiC epilayer grown by low-pressure chemical vapour deposition,” J. Electron. Mater., 25, 917–923 (1996).

    CAS  Google Scholar 

  5. D. K. Basa and F. V. Smith, “Annealing and crystallization processes in hydrogenated amorphous Si-C alloy films,” Thin Solid Films, 192, 121–133 (1990).

    Article  CAS  Google Scholar 

  6. Masao Yamada, Kasuako Kondo, Masapumi Nakaishi, et al., “Process technologies for Ta/SiC X-ray masks,” J. Electrochem. Soc., 137, 2231–2240 (1990).

    CAS  Google Scholar 

  7. Yoshio Ohshita, “Theoretical studies of CH2 adsorption process in β-SiC vapor phase epitaxial growth,” J. Cryst. Growth, 110, 516–522 (1991).

    Article  CAS  Google Scholar 

  8. J. Rodrigues-Viejo, J. Stoemenos, N. Clavaguera, and M. T. Clavaguera-Mora, “Growth morphology of low-pressure metallographic chemical vapor deposition silicon carbide on a-SiO2/Si(100) substrates,” J. Cryst. Growth, 155, 214–222 (1995).

    Google Scholar 

  9. S. Wickranayaka, Y. Hatamaka, Y. Nakanishi, and A. M. Wrobel, “Preparation and deposition mechanism of a-SiC:H films by using hexamethyldisilane in a remote H2 plasma,” J. Electrochem., 141, 2910–2914 (1994).

    Google Scholar 

  10. D. V. Fedoseev, R. K. Chuzhko, and A. G. Grivtsov, Heterogeneous Crystallization from the Vapor Phase [in Russian], Nauka, Moscow (1978), pp. 28–32.

    Google Scholar 

  11. A. S. Sin'kovskii and G. V. Zemskov, “Silicon carbide coatings on graphite,” in: Heat-Resisting Protect Coatings [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  12. I. N. Frantsevich, L. A. Gaevskaya, G. V. Rusakov, and S. S. Ponomarev, “Effects of annealing on the structure and composition of the surface layer of KTS-2M hard alloy with a coating,” Dokl. AN Ukr. SSR, Ser. A, No. 2, 81–85 (1985).

  13. G. V. Rusakov, L. A. Ivashchenko, V. I. Ivashchenko, and O. K. Porada, “Peculiarities of preparing a-SiC: H films from methyltrichlorosilane,” Appl. Surface Sci., 184, 128–134 (2001).

    Article  CAS  Google Scholar 

  14. F. Loumage, F. Langlais, and R. Naslan, “Reactional mechanism of the chemical vapor deposition of SiC-based ceramics from CH3SiCl3/H2 gas precursor,” J. Cryst. Growth, 155, 205–213 (1995).

    Google Scholar 

  15. D. J. Chang, W. J. Shyy, D. H. Kuo, and M. H. Hon, “Growth characteristics of CVD beta-silicon carbide,” J. Electrochem., 134, 3145–3149 (1987).

    Google Scholar 

  16. Myoung Gi So and John S. Chun, “Growth and structure of chemical deposited silicon carbide from methyltrichlorosilane and hydrogen in the temperature range of 1100 to 1400°C,” J. Vac. Sci. Technol., A6, 5–8 (1988).

    Google Scholar 

  17. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., 7, 1564–1583 (1992).

    CAS  Google Scholar 

  18. L. Magafas, “The effect of thermal annealing on the optical properties of a-SiC: H films,” J. Non-Cryst. Sol., 238, 158–162 (1988).

    Google Scholar 

  19. A. Grill and V. Patel, “Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from tetramethylsilane,” J. Appl. Phys., 85, 3314–3318 (1999).

    Article  CAS  Google Scholar 

  20. V. Mastelaro, A. M. Flank, M. C. A. Fantini, et al., “On the structural properties of a-Si1−x C x thin films,” J. Appl. Phys., 79, 1324–1329 (1986).

    Google Scholar 

  21. J. Seekamp and W. Bauhofer, “Influence of thermal annealing on the ultraviolet stability of a-SiC: H thin films deposited from liquid organosilanes,” J. Non-Cryst. Sol., 227–230, 474–477 (1998).

    Google Scholar 

  22. T. P. Smirnova, L. V. Yakovkina, B. M. Ayupov, et al., “The properties of silicon carbide films made from rimethylchlorosilane,” Neorgan. Materialy, 35, 1460–1467 (1999).

    Google Scholar 

  23. D. M. Wolf and G. Lucovsky, “Formation of nano-crystalline Si by thermal annealing of SiO x , SiC x , and SiO y C x amorphous alloys: Model system for advanced device processing,” J. Non-Cryst. Sol., 266–269, 1009–1014 (2000).

    Google Scholar 

  24. Y. Liu, F. Giorgis, and C. F. Pirri, “Thermal modification of wide-bandgap hydrogenated amorphous silicocarbon alloy films grown by plasma-enhanced chemical vapour deposition from C2H2 + SiH4 mixtures,” Phil. Mag., 75, 485–496 (1997).

    CAS  Google Scholar 

  25. J. Esteve, A. Lousa, E. Martinez, H. Huck, et al., “Amorphous Si x C1−x films: An example of materials presenting low indentation hardness and high wear resistance,” Diam. Rel. Mater., 10, 1053–1057 (2001).

    CAS  Google Scholar 

  26. M. A. El Khakani, M. Chafer, A. Jean, et al., “Hardness and Young's modulus of amorphous a-SiC thin films determined by nanoindentation and bulge tests,” J. Mater. Res., 9, 96–102 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Poroshkovaya Metallurgiya, Nos. 7–8(444), pp. 69–79, July–August, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porada, O.K., Rusakov, G.V., Ivashchenko, L.A. et al. Characteristics and Plasmochemical Deposition of Coatings Based on Amorphous Hydrogenated Silicon Carbide. Powder Metall Met Ceram 44, 363–371 (2005). https://doi.org/10.1007/s11106-005-0104-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-005-0104-4

Keywords

Navigation