Skip to main content
Log in

Effect of hydrogen on the amorphous structure of the alloy Mg65Cu25Y10 under electrochemical saturation

  • Structural Studies of Materials
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

Thin ribbons of the metallic glass Mg65Cu25Y10, obtained by spinning, were saturated with atomic hydrogen from electrochemical decomposition of water. The maximum amount of absorbed hydrogen was 4 mass %. The hydrogen content was determined by hot extraction. We studied the microstructure of samples with different hydrogen contents by x-ray phase analysis (from the change in the diffuse maximum), atomic force microscopy, scanning electron microscopy, and transmission electron microscopy. When the hydrogen content increases up to 3.6 mass %, the amorphous structure of the Mg65Cu25Y10 alloy is converted to a nanocrystalline structure, with formation of magnesium and yttrium hydrides at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. A. Kolachev, R. E. Shalin, and A. A. Il’in, Hydrogen-Storing Alloys [in Russian], Metallurgiya, Moscow (1995).

    Google Scholar 

  2. J. J. Reilli and R. H. Wiswall, “The reaction of hydrogen with alloys of magnesium and copper,” Inorganic Chemistry, 6, 2220–2223 (1967).

    Google Scholar 

  3. J. J. Reilli, “Metal hydride technology,“ Zeitschrift für Physikalische Chemie, Neue Folge [New Series], 117, 155–184 (1979).

    Google Scholar 

  4. J. Genossar and P. S. Rudman, “The catalytic role of Mg2Cu in the hydriding and dehydriding of Mg,” Zeitschrift für Physikalische Chemie, Neue Folge [New Series], 116, 215–224 (1979).

    Google Scholar 

  5. A. Seiler, L. Schlapbach, Th. von Waldrich et al., “Surface analysis of Mg2Ni—Mg, Mg2Ni, Mg2Cu,” J. Less-Comm. Met., 73, 193–199 (1980).

    Google Scholar 

  6. A. Zaluska, L. Zaluski, and J. O. Strom-Olsen, “Nanocrystalline magnesium for hydrogen storage,” J. Alloys Comp., 288, 217–225 (1999).

    Google Scholar 

  7. G. G. Perrault, “Corrosion mechanisms of magnesium alloys,” Electroanal. Chem. Interfac. Electrochem., 51, 107 (1974).

    Google Scholar 

  8. I. G. Konstanchuk, E. Yu. Ivanov, and V. V. Boldyrev, “Reaction of hydrogen with alloys and intermetallics obtained by mechanochemical methods,” Usp. Khimii, 67, 75–87 (1998).

    Google Scholar 

  9. A. Inoue and T. Masumoto, “Mg-based amorphous alloys,” Mat. Sci. Eng., A173, 1–8 (1993).

    Google Scholar 

  10. A. Inoue, A. Kato, T. Zhang et al., “Mg - Cu - Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method,” Mat. Trans. Jpn. Inst. Met., 32, 609–616 (1991).

    Google Scholar 

  11. A. Gebert, U. Wolff, M. Savyak et al., “Stability and electrochemical properties of Mg65Cu25Y10 metallic glass,” Mat. Sci. Forum, 377, 9–14 (2001).

    Google Scholar 

  12. J. Eckert J., “Massive amorphous metals,“ Wissenschaftliche Zeitschrift der Technischen Universität Dresden, 46, No. 3, 86–90 (1997).

    Google Scholar 

  13. K. Suzuki, H. Fujimori, and K. Hashimoto, Amorphous Metals [Russian translation from Japanese], Metallurgiya, Moscow (1987).

    Google Scholar 

  14. M. Savyak, S. Hirny, H.-D. Bauer et al., “Electrochemical hydrogenation of Mg65Cu25Y10,” J. Alloys Comp., 364, 229–237 (2004).

    Google Scholar 

  15. O. S. Lytvyn, V. S. Khomchenko, T. G. Kryshtab, and P. M. Lytvyn, “Structural investigations of annealed ZnS:Cu, Ga film phosphors,” Semiconductor Physics. Quantum Electronics Optoelectronics, 4, No. 1, 19–23 (2001).

    Google Scholar 

  16. V. P. Klad’ko, O. S. Lytvyn, and P. M. Lytvyn, “Recrystallisation processes in screen-printed CdS films,” Semiconductor Physics. Quantum Electronics Optoelectronics, 5, No. 2, 170–175 (2002).

    Google Scholar 

  17. K. N. Semenenko, V. A. Yartys’, and V. V. Burnasheva, “«Deformability» of a crystal lattice and the ratio of intermetallic compounds to hydrogen,” Dokl. Akad. Nauk SSSR, 245, No. 5, 1127–1130 (1979).

    Google Scholar 

  18. V. A. Yartys, I. R. Harris, V. V. Panasyuk, “Novel metal hydrides. A review,” Mat. Sci., 29, 100–116 (2001).

    Google Scholar 

  19. J. Güntherodt and H. Beck, Glassy Metals. Ionic Structure, Electronic Transport and Crystallisation, Springer, Berlin; New York (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Poroshkovaya Metallurgiya, No. 9–10(439), pp. 87–94, September–October, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savyak, M.P., Gebert, A. & Uhlemann, M. Effect of hydrogen on the amorphous structure of the alloy Mg65Cu25Y10 under electrochemical saturation. Powder Metall Met Ceram 43, 513–519 (2004). https://doi.org/10.1007/s11106-005-0014-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-005-0014-5

Key words

Navigation