Skip to main content
Log in

Rice Transcriptomics Reveal the Genetic Determinants of An In Planta Photorespiratory Bypass: a Novel Way to Increase Biomass in C3 Plants

  • RESEARCH
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Developing C4 rice is one of the global research challenges for yield improvement. In the optimal environment, the key difference between C3 and C4 plants with reference to biomass accumulation is photorespiration. Photorespiration is important for a plant’s survival. In spite of the high energy cost and carbon loss, diversion of a significant part of carbon from photorespiration to enrich CO2 concentration (preventing carbon loss) was opted for. Installation of photorespiratory bypasses was reported to improve biomass and yield in C3 plants. The contribution of non-foliar photosynthesis to yield improvement was well documented. However, its underlying genetic differences, when compared to foliar photosynthesis, are a research gap. In three rice genotypes (APO, BAM4234, and CROSSA), we compared the expression levels (for genes associated with photosynthesis and photorespiration) between the photosynthetic non-foliar (3–5-day old developing grains and peduncle) and foliar (flag leaf) organs to understand their differential expression pattern using an RNA-seq approach. Significant downregulation of the genes of photorespiration was observed in non-foliar photosynthetic tissue (3–5 dpa old developing grains) when compared to the flag leaves. Simultaneously, our study also revealed significant upregulation of the chloroplastic pyruvate dehydrogenase (cpPDC, BGIOSGA015796) gene in developing grains, when compared to the flag leaf, in all three genotypes. The occurrence of an in planta photorespiratory bypass in the photosynthetic tissues of the developing grains in rice is proposed. Enhanced expression levels for the cpPdc gene in the foliar tissues will potentially install a photorespiratory bypass for enhanced biomass accumulation and thereby yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data and sequence information were provided in the supplementary information of the manuscript. Additionally, the transcriptome raw reads for 18 samples (three genotypes, three tissues, and two replicates) were submitted in public database and is available at E-MTAB-8361. https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8361/

References

  • AuBuchon-Elder T, Coneva V, Goad DM, Jenkins LM, Yu Y, Allen DK, Kellogg EA (2020) Sterile spikelets contribute to yield in sorghum and related grasses. Plant Cell 32:3500–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89

    Article  CAS  PubMed  Google Scholar 

  • Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15(6):330–336

    Article  CAS  PubMed  Google Scholar 

  • Betti M, Bauwe H, Busch FA, Fernie AR, Keech O, Levey M, Ort DR, Parry MA, Sage R, Timm S, Walker B, Weber AP (2016) Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement. J Exp Bot 67(10):2977–2988

    Article  CAS  PubMed  Google Scholar 

  • Bin Rahman AR, Zhang J (2023) Trends in rice research: 2030 and beyond. Food Energy Secur 12(2)

    Article  Google Scholar 

  • Blume C, Behrens C, Eubel H, Braun H-P, Peterhansel C (2013) A possible role for the chloroplast pyruvate dehydrogenase complex in plant glycolate and glyoxylate metabolism. Phytochemistry 95:168–176

    Article  CAS  PubMed  Google Scholar 

  • Bradbury M, Baker N (1986) The kinetics of photoinhibition of the photosynthetic apparatus in pea chloroplasts. Plant, Cell Environ 9(4):289–297

    Article  Google Scholar 

  • Camp PJ, Randall DD (1985) Purification and characterization of the pea chloroplast pyruvate dehydrogenase complex: a source of acetyl-CoA and NADH for fatty acid biosynthesis. Plant Physiol 77(3):571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell WJ, Ogren WL (1990) Glyoxylate inhibition of ribulosebisphosphate carboxylase/oxygenase activation in intact, lysed, and reconstituted chloroplasts. Photosynth Res 23(3):257–268

    Article  CAS  PubMed  Google Scholar 

  • Carvalho JdF, Madgwick PJ, Powers SJ, Keys AJ, Lea PJ, Parry MA (2011) An engineered pathway for glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photorespiration. BMC Biotechnol 11(1):1–17

    Article  Google Scholar 

  • Christin P-A, Boxall SF, Gregory R, Edwards EJ, Hartwell J, Osborne CP (2013) Parallel recruitment of multiple genes into C4 photosynthesis. Genome Biol Evol 5(11):2174–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook CM, Mulligan RM, Tolbert N (1985) Inhibition and stimulation of ribulose-1, 5-bisphosphate carboxylase/oxygenase by glyoxylate. Arch Biochem Biophys 240(1):392–401

    Article  CAS  PubMed  Google Scholar 

  • Dellero Y, Jossier M, Schmitz J, Maurino VG, Hodges M (2016) Photorespiratory glycolate–glyoxylate metabolism. J Exp Bot 67(10):3041–3052

    Article  CAS  PubMed  Google Scholar 

  • de Kok A, Hengeveld AF, Martin A, Westphal AH (1998) The pyruvate dehydrogenase multi-enzyme complex from Gram-negative bacteria. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1385(2):353–366

    Article  CAS  PubMed  Google Scholar 

  • Demmig B, Winter K, Krüger A, Czygan F-C (1988) Zeaxanthin and the heat dissipation of excess light energy in Nerium oleander exposed to a combination of high light and water stress. Plant Physiol 87(1):17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards JW, Coruzzi GM (1989) Photorespiration and light act in concert to regulate the expression of the nuclear gene for chloroplast glutamine synthetase. Plant Cell 1(2):241–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehleringer J, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants: dependence on temperature, CO2, and O2 concentration. Plant Physiol 59(1):86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G* Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191

    Article  PubMed  Google Scholar 

  • Fedina I, Tsonev T, Guleva E (1994) ABA as a modulator of the response of Pisum sativum to salt stress. J Plant Physiol 143(2):245–249

    Article  CAS  Google Scholar 

  • Flügel F, Timm S, Arrivault S, Florian A, Stitt M, Fernie AR, Bauwe H (2017) The photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis and starch accumulation in Arabidopsis. Plant Cell 29(10):2537–2551

    Article  PubMed  PubMed Central  Google Scholar 

  • Givan CV, Kleczkowski LA (1992) The enzymic reduction of glyoxylate and hydroxypyruvate in leaves of higher plants. Plant Physiol 100(2):552–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatcher W, Holden G (1925) Decarboxylation of glyoxylate by H 2 0 2. Trans R Soc Canada, Sect 3(19):11–20

    Google Scholar 

  • Hori K, Sun J (2022) Rice Grain Size and Quality Rice 15(1):33

    PubMed  Google Scholar 

  • Igamberdiev AU, Lernmark U, Gardeström P (2014) Activity of the mitochondrial pyruvate dehydrogenase complex in plants is stimulated in the presence of malate. Mitochondrion 19:184–190

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Chen G, Yang Y, Zhang Z, Lu T (2023) Strategies for manipulating Rubisco and creating photorespiratory bypass to boost C3 photosynthesis: Prospects on modern crop improvement. Plant, Cell Environ 46(2):363–378

    Article  CAS  PubMed  Google Scholar 

  • Jones L, Kok B (1966) Photoinhibition of chloroplast reactions. I Kinetics and action spectra. Plant physiology 41(6):1037–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katila P, Colfer CJP, De Jong W, Galloway G, Pacheco P, Winkel G (2020) Sustainable development goals: their impacts on forests and people. Cambridge University Press

    Google Scholar 

  • Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H-J, Rosenkranz R, Stäbler N, Schönfeld B, Kreuzaler F, Peterhänsel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25(5):593–599

    Article  CAS  PubMed  Google Scholar 

  • Korotchkina L, Ali M, Patel M (1996) Probing the active site of mammalian pyruvate dehydrogenase. In: Patel MS, Roche TE, Harris RA (eds) Alpha-Keto Acid Dehydrogenase Complexes. Springer Verlag, Switzerland, pp 17–32

    Chapter  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384(6609):557–560

    Article  CAS  Google Scholar 

  • Luethy M, Miernyk J, David N, Randall D (1996) Plant pyruvate dehydrogenase complexes. In: Patel MS, Roche TE, Harris RA (eds) Alpha-keto acid dehydrogenase complexes. Springer Verlag, Switzerland, pp 71–92

    Chapter  Google Scholar 

  • Maier A, Fahnenstich H, Von Caemmerer S, Engqvist MK, Weber AP, Flügge U-I, Maurino VG (2012) Transgenic introduction of a glycolate oxidative cycle into A. thaliana chloroplasts leads to growth improvement. Front Plant Sci 3:38

  • Manuel N, Cornic G, Aubert S, Choler P, Bligny R, Heber U (1999) Protection against photoinhibition in the alpine plant Geum montanum. Oecologia 119(2):149–158

    Article  CAS  PubMed  Google Scholar 

  • Maurino VG, Peterhansel C (2010) Photorespiration: current status and approaches for metabolic engineering. Curr Opin Plant Biol 13(3):248–255

    Article  Google Scholar 

  • Nölke G, Houdelet M, Kreuzaler F, Peterhänsel C, Schillberg S (2014) The expression of a recombinant glycolate dehydrogenase polyprotein in potato (S olanum tuberosum) plastids strongly enhances photosynthesis and tuber yield. Plant Biotechnol J 12(6):734–742

    Article  PubMed  Google Scholar 

  • Nutbeam AR, Duffus CM (1976) Evidence for C4 photosynthesis in barley pericarp tissue. Biochem Biophys Res Commun 70(4):1198–1203

    Article  CAS  PubMed  Google Scholar 

  • Osmond C (1981) Photorespiration and photoinhibition: some implications for the energetics of photosynthesis. Biochimica et Biophysica Acta (BBA)-Rev Bioenerg 639(2):77–98

    Article  CAS  Google Scholar 

  • Patel MS, Korotchkina LG (2003) The biochemistry of the pyruvate dehydrogenase complex. Biochem Mol Biol Educ 31(1):5–15

    Article  CAS  Google Scholar 

  • Patel MS, Nemeria NS, Furey W, Jordan F (2014) The pyruvate dehydrogenase complexes: structure-based function and regulation. J Biol Chem 289(24):16615–16623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel MS, Roche TE (1990) Molecular biology and biochemistry of pyruvate dehydrogenase complexes 1. FASEB J 4(14):3224–3233

    Article  CAS  PubMed  Google Scholar 

  • Pengelly JJ, Kwasny S, Bala S, Evans JR, Voznesenskaya EV, Koteyeva NK, Edwards GE, Furbank RT, von Caemmerer S (2011) Functional analysis of corn husk photosynthesis. Plant Physiol 156(2):503–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterhansel C, Maurino VG (2011) Photorespiration redesigned. Plant Physiol 155(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Powles SB, Osmond CB, Thorne SW (1979) Photoinhibition of intact attached leaves of C3 plants illuminated in the absence of both carbon dioxide and of photorespiration. Plant Physiol 64(6):982–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rachmilevitch S, Cousins AB, Bloom AJ (2004) Nitrate assimilation in plant shoots depends on photorespiration. Proc Natl Acad Sci 101(31):11506–11510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangan P, Furtado A, Henry RJ (2016) New evidence for grain specific C 4 photosynthesis in wheat. Sci Rep 6:31721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangan P, Wankhede DP, Subramani R, Chinnusamy V, Malik SK, Baig MJ, Singh K, Henry R (2022) Evolution of an intermediate C4 photosynthesis in the non-foliar tissues of the Poaceae. Photosynth Res 153:125–134. https://doi.org/10.1007/s11120-022-00926-7

    Article  CAS  PubMed  Google Scholar 

  • Roell M-S, Schada von Borzyskowski L, Westhoff P, Plett A, Paczia N, Claus P, Schlueter U, Erb TJ, Weber AP (2021) A synthetic C4 shuttle via the β-hydroxyaspartate cycle in C3 plants. Proc Natl Acad Sci 118(21):e2022307118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47

    Article  CAS  PubMed  Google Scholar 

  • Servaites JC, Ogren WL (1977) Chemical inhibition of the glycolate pathway in soybean leaf cells. Plant Physiol 60(4):461–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma PK, Hall DO (1991) Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum. J Plant Physiol 138(5):614–619

    Article  CAS  Google Scholar 

  • Sharma PK, Hall DO (1992) Changes in carotenoid composition and photosynthesis in sorghum under high light and salt stresses. J Plant Physiol 140(6):661–666

    Article  CAS  Google Scholar 

  • Shen B-R, Wang L-M, Lin X-L, Yao Z, Xu H-W, Zhu C-H, Teng H-Y, Cui L-L, Liu E-E, Zhang J-J (2019) Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice. Mol Plant 12(2):199–214

    Article  CAS  PubMed  Google Scholar 

  • Simkin AJ, Faralli M, Ramamoorthy S, Lawson T (2020) Photosynthesis in non-foliar tissues: implications for yield. Plant J 101(4):1001–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somerville CR, Ogren WL (1979) A phosphoglycolate phosphatase-deficient mutant of Arabidopsis. Nature 280(5725):833–836

    Article  CAS  Google Scholar 

  • Somerville C, Ogren W (1980a) Photorespiration mutants of Arabidopsis thaliana deficient in serine-glyoxylate aminotransferase activity. Proc Natl Acad Sci 77(5):2684–2687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somerville CR, Ogren WL (1980b) Inhibition of photosynthesis in Arabidopsis mutants lacking leaf glutamate synthase activity. Nature 286(5770):257–259

    Article  CAS  Google Scholar 

  • South PF, Cavanagh AP, Liu HW, Ort DR (2019) Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science 363 (6422):eaat9077

  • Tambussi EA, Maydup ML, Carrión CA, Guiamet JJ, Araus JL (2021) Ear photosynthesis in C3 cereals and its contribution to grain yield: methodologies, controversies, and perspectives. J Exp Bot 72(11):3956–3970

    Article  CAS  PubMed  Google Scholar 

  • Timm S, Hagemann M (2020) Photorespiration–how is it regulated and regulates overall plant metabolism? J Exp Bot 71:3955–3965

    Article  CAS  PubMed  Google Scholar 

  • Tovar-Méndez A, Miernyk JA, Randall DD (2003) Regulation of pyruvate dehydrogenase complex activity in plant cells. Eur J Biochem 270(6):1043–1049

    Article  PubMed  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker BJ, VanLoocke A, Bernacchi CJ, Ort DR (2016) The costs of photorespiration to food production now and in the future. Annu Rev Plant Biol 67:107–129

    Article  CAS  PubMed  Google Scholar 

  • Wang L-M, Shen B-R, Li B-D, Zhang C-L, Lin M, Tong P-P, Cui L-L, Zhang Z-S, Peng X-X (2020) A synthetic photorespiratory shortcut enhances photosynthesis to boost biomass and grain yield in rice. Mol Plant 13(12):1802–1815

    Article  CAS  PubMed  Google Scholar 

  • Wingler A, Lea PJ, Leegood RC (1999) Photorespiratory metabolism of glyoxylate and formate in glycine-accumulating mutants of barley and Amaranthus edulis. Planta 207(4):518–526

    Article  CAS  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond B Biol Sci 355(1402):1517–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Wang H, Zhang Y, Yang X, Lv S, Hou D, Mo C, Wassie M, Yu B, Hu T (2023) A synthetic light-inducible photorespiratory bypass enhances photosynthesis to improve rice growth and grain yield. Plant Communications. https://doi.org/10.1016/j.xplc.2023.100641

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Fu X, Sharkey TD, Shachar-Hill Y, Walker B (2021) The metabolic origins of non-photorespiratory CO2 release during photosynthesis: a metabolic flux analysis. Plant Physiology Kiab 076:6137851. https://doi.org/10.1093/plphys/kiab076/6137851

    Article  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GKS, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). science 296(5565):79–92

    Article  CAS  PubMed  Google Scholar 

  • Zelitch I (1966) Increased rate of net photosynthetic carbon dioxide uptake caused by the inhibition of glycolate oxidase. Plant Physiol 41(10):1623–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelitch I (1972) The photooxidation of glyoxylate by envelope-free spinach chloroplasts and its relation to photorespiration. Arch Biochem Biophys 150(2):698–707

    Article  CAS  PubMed  Google Scholar 

  • Zelitch I, Ochoa S (1953) Oxidation and reduction of glycolic and glyoxylic acids in plants. J Biol Chem 201(2):707–719

    Article  CAS  PubMed  Google Scholar 

  • Zelitch I, Schultes NP, Peterson RB, Brown P, Brutnell TP (2009) High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiol 149(1):195–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge M/s NxGenBio Life Sciences, Delhi, for the outsourced sequencing services and Mr. Nitesh Bandhiwal of this firm for his technical help. The authors also acknowledge the access for the supercomputing facility “ASHOKA.” We are grateful to Govindjee Govindjee (of the University of Illinois at Urbana-Champaign, USA) and Robert Henry (of the University of Queensland at St Lucia, Australia), for their critical inputs, comments, and suggestions. The authors also thank the anonymous reviewers for their inputs and comments.

Funding

Funding was supported by the Indian Council of Agricultural Research, through the research scheme “Incentivizing research in agriculture” program.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, PR; Formal investigation, analysis and supervision, PR, DW, RS; Funding acquisition, SM, MJB; Methodology, PR, DW, RS, VC, PP, AB; Resources, VC, MJB, AR,KS; Writing – original draft, PR; Writing—review and editing, PR, VC, KS, RS, DW,MJB.

Corresponding author

Correspondence to Parimalan Rangan.

Ethics declarations

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

All the authors have read the final version of the manuscript and had consented for its submission.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangan, P., Wankhede, D.P., Subramani, R. et al. Rice Transcriptomics Reveal the Genetic Determinants of An In Planta Photorespiratory Bypass: a Novel Way to Increase Biomass in C3 Plants. Plant Mol Biol Rep (2024). https://doi.org/10.1007/s11105-024-01469-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11105-024-01469-y

Keywords

Navigation