Skip to main content
Log in

Novel Microsatellite Markers Derived from Arachis pintoi Transcriptome Sequencing for Cross-Species Transferability and Varietal Identification

  • RESEARCH
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Forage peanut (Arachis pintoi) is an important leguminous forage that has gained popularity due to increased livestock productivity. Furthermore, the species helps with soil fertility and the restoration of degraded areas. However, A. pintoi has a limited number of molecular markers. The objective of this study was to create and characterize gene-derived microsatellite markers as well as to test their transferability to the peanut (Arachis hypogaea) and other six wild Arachis species. A total of 4461 putative simple sequence repeats (SSR) were identified, and PCR primer pairs were designed for 999 SSR regions after filtering out primers with the same annealing site and searching for sequences related to open reading frames (ORFs). The dinucleotide motif was the most common (628; 62.86%). For validation, 186 primer pairs were chosen at random, of which 63 (33.87%) were polymorphic, with an average of 7.37 alleles per locus. Polymorphic information content (PIC = 0.70) and discriminatory power (D = 0.80) were both high on average. The functional annotation discovered 120 sequences that were assigned to 87 gene ontology functional groups divided into three main categories: molecular function (27 sub-categories), cellular components (21 sub-categories), and biological process (39 sub-categories). Thirty-three SSRs were tested for transferability to peanut and six other wild Arachis species, resulting in variable cross-species amplification (63.64 to 100%). Here, we present the first gene-derived SSR for A. pintoi. These new informative microsatellites may be linked to agronomically important genes to be used in genetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Abel S, Bürstenbinder K, Müller J (2013) The emerging function of IQD proteins as scaffolds in cellular signaling and trafficking. Plant Signal Behav 8(6):e24369. https://doi.org/10.4161/psb.24369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves DM, Pereira RW, Leal-Bertioli SC, Moretzsohn MC, Guimaraes PM, Bertioli DJ (2008) Development and use of single nucleotide polymorphism markers for candidate resistance genes in wild peanuts (Arachis spp.). Genet Mol Res 7(3):631–642

  • Azêvedo HSFS, Benvindo FD, Cavalcante LN, Haverroth M, Wadt LHO, Campos T (2017) Transferability of heterologous microsatellite loci between species of Euterpe genus. Genet Mol Res 16:1–7

    Article  Google Scholar 

  • Azêvedo HSFS, Sousa ACB, Martins K, Oliveira JC, Yomura RBT, Silva LM, Valls JFM, Assis GML, Campos T (2016) Genetic diversity of the forage peanut in the Jequitinhonha, São Francisco, and Paraná River valleys of Brazil. Genet Mol Res 15(3):1–11. https://doi.org/10.4238/gmr.15038601

    Article  CAS  Google Scholar 

  • Bangarwa SK, Balwan SKL, Choudhary M, Choudhary MK (2021) An introduction to DNA-markers and their role in crop improvement. The Pharma Innovation Journal 10(7S):638–643

    Google Scholar 

  • Barda O, Levy M (2022) IQD1 involvement in hormonal signaling and general defense responses against Botrytis cinerea. Front Plant Sci 13:845140. https://doi.org/10.3389/fpls.2022.845140

    Article  PubMed  PubMed Central  Google Scholar 

  • Barreto FZ, Rosa JRBF, Balsalobre TWA, Pastina MM, Silva RR, Hoffmann HP, Souza AP, Garcia AAF, Carneiro MS (2019) A genome-wide association study identified loci for yield component traits in sugarcane (Saccharum spp.). Plos One 14(7):e0219843. https://doi.org/10.1371/journal.pone.0219843

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosamia TC, Mishra GP, Thankappan R, Dobaria JR (2015) Novel and stress relevant EST derived SSR markers developed and validated in peanut. PLoS ONE 10:e0129127. https://doi.org/10.1371/journal.pone.0129127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic map in man using restriction fragment length polymorphism. Am J Hum Genet 32(3):314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campos T, Azêvedo HSFS, Oliveira JC, Ferreira Filho JA, Yomura RBT, Silva LM (2016) Protocolo para identificação de híbridos de amendoim forrageiro utilizando marcador molecular microssatélite. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/156276/1/26263.pdf. Accessed 03 February 2022

  • Chopra R, Burow G, Farmer A, Mudge J, Simpson CE, Wilkins TA, Baring MR, Puppala N, Chamberlin KD, Burow MD (2015) Next-generation transcriptome sequencing, SNP discovery and validation in four market classes of peanut. Arachis Hypogaea l Mol Gen Genet 290(3):1169–1180

    Article  CAS  Google Scholar 

  • Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:1–12. https://doi.org/10.1155/2008/619832

    Article  CAS  Google Scholar 

  • Czarnocka W, Fichman Y, Bernacki M, Różańska E, Sańko-Sawczenko I, Mittler R, Karpiński S (2020) FMO1 is involved in excess light stress-induced signal transduction and cell death signaling. Cells 9(10):2163. https://doi.org/10.3390/cells9102163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalal M, Sahu S, Tiwari S, Rao AR, Gaikwad K (2018) Transcriptome analysis reveals interplay between hormones, ROS metabolism, and cell wall biosynthesis for drought-induced root growth in wheat. Plant Physiol Biochem 130:482–492. https://doi.org/10.1016/j.plaphy.2018.07.035

    Article  CAS  PubMed  Google Scholar 

  • Desai H, Hamid R, Ghorbanzadeh Z, Bhut N, Padhiyar SM, Kheni J, Tomar RS (2021) Genic microsatellite marker characterization and development in little millet (Panicum sumatrense) using transcriptome sequencing. Sci Rep 11:20620. https://doi.org/10.1038/s41598-021-00100-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Embrapa (2023) Balanço Social da Embrapa 2022. https://www.embrapa.br/balanco-social-2022/impactos-de-solucoes-tecnologicas-por-tema/producao-animal. Accessed 20 June 2023

  • Friend SAD, Quandt SP, Tallury HT, Stalker KWH (2010) Species, genomes, and section relationships in the genus Arachis (Fabaceae): a molecular phylogeny. Plant Syst Evol 290:185–199. https://doi.org/10.1007/s00606-010-0360-8

    Article  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863. https://doi.org/10.1146/annurev-arplant-042811-105606

    Article  CAS  PubMed  Google Scholar 

  • Gayathri M (2017) Development of AhTE and CAPS markers in groundnut (Arachis hypogaea L.). Dissertation, University of Agricultural Sciences

  • Ge Y, Tan L, Wu B, Wang T, Zhang T, Chen H, Zou M, Ma F, Xu Z, Zhan R (2019) Transcriptome sequencing of different avocado ecotypes: de novo transcriptome assembly, annotation, identification and validation of EST-SSR markers. Forests 10(5):411. https://doi.org/10.3390/f10050411

    Article  Google Scholar 

  • Goslin K, Zheng B, Serrano-Mislata A, Rae L, Ryan PT, Kwaśniewska K, Thomson B, Ó’Maoiléidigh DS, Madueño F, Wellmer F, Graciet E (2017) Transcription factor interplay between LEAFY and APETALA1/CAULIFLOWER during floral initiation. Plant Physiol 174(2):1097–1109. https://doi.org/10.1104/pp.17.00098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halward TM, Stalker HT, Larue EA, Kochert G (1991) Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. Genome 34(6):1013–1020

    Article  CAS  Google Scholar 

  • Harshitha NS, Sandal SS (2022) DNA fingerprinting and its applications in crop improvement: a review. The Pharma Innovation Journal 11(5S):792–797

    Google Scholar 

  • He G, Prakash C (1997) Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97(2):143–149

  • Hina F, Yisilam G, Wang S, Li P, Fu C (2020) De novo transcriptome assembly, gene annotation and SSR marker development in the moon seed genus Menispermum (Menispermaceae). Front Genet 11:380. https://doi.org/10.3389/fgene.2020.00380

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodel RGJ, Segovia-Salcedo MC, Landis JB, Crowl AA, Sun M, Liu X, Gitzendanner MA, Douglas NA, Germain-Aubrey CC, Chen S, Soltis DE, Soltis PS (2016a) The report of my death was an exaggeration: a review for researchers using microsatellites in the 21st century. Appl Plant Sci 4(6):1600025. https://doi.org/10.3732/apps.1600025

    Article  Google Scholar 

  • Hodel RGJ, Gitzendanner MA, Germain-Aubrey CC, Liu X, Crowl AA, Sun M, Landis JB, Segovia-Salcedo MC, Douglas NA, Chen S, Soltis DE, Soltis PS (2016b) A new resource for the development of SSR markers: millions of loci from a thousand plant transcriptomes. Appl Plant Sci 4(6):1600024. https://doi.org/10.3732/apps.1600024

    Article  Google Scholar 

  • Hong Y, Pandey MK, Liu H, Chen X, Liu H, Varshney RK, Liang X, Huang S (2015) Identification and evaluation of single-nucleotide polymorphisms in allotetraploid peanut (Arachis hypogaea L.) based on amplicon sequencing combined with high resolution melting (HRM) analysis. Front Plant Sci 6(1068):1–10

  • Huang L, Wu B, Zhao J, Li H, Chen W, Zheng Y, Ren X, Chen Y, Zhou X, Lei Y, Liao B, Jiang H (2016) Characterization and transferable utility of microsatellite markers in the wild and cultivated Arachis species. Plos One 11(5):e0156633. https://doi.org/10.1371/journal.pone.0156633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal MZ, Jamil S, Shahzad R, Bilal K, Qaisar R, Nisar A, Kanwal S, Bhatti MK (2021) DNA fingerprinting of crops and its applications in the field of plant breeding. J Agric Res 59(1):13–28

    Google Scholar 

  • Kaufmann K, Wellmer F, Muiño JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueño F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL (2010) Orchestration of floral initiation by APETALA1. Science 328(5974):85–89. https://doi.org/10.1126/science.1185244

    Article  CAS  PubMed  Google Scholar 

  • Krapovickas A, Gregory WC (1994) Taxonomia del género Arachis (Leguminosae). Bonplandia 8:1–186

    Article  Google Scholar 

  • Levy M, Wang Q, Kaspi R, Parrella MP, Abel S (2005) Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J 43:79–96. https://doi.org/10.1111/j.1365-313X.2005.02435.x

    Article  CAS  PubMed  Google Scholar 

  • Maia GFN (2018) Desempenho produtivo de dois grupos genéticos de bovinos de corte em pastos puros e consorciados na Amazônia Ocidental. Dissertation, Universidade Federal do Acre. http://www2.ufac.br/ppgespa_docs/dissertacoes/dissertacao_gerbson.pdf. Accessed 15 January 2022

  • Menezes, APM (2011) Caracterzação morfológica, divergência genética e correlação entre caracteres em genótipos de amendoim forrageiro. Dissertation, Universidade Federal do Acre. https://www.alice.cnptia.embrapa.br/bitstream/doc/1093234/1/26643.pdf

  • Miller MP (1997) Tools for population genetic analyses (TFPGA): a windows program for the analysis of allozyme and molecular population genetic data, version 1.3. Northern Arizona University, Arizona

  • Mishina TE, Zeier J (2006) The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance. Plant Physiol 141(4):1666–1675. https://doi.org/10.1104/pp.106.081257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mojena R (1977) Hierarchical grouping methods and stopping rules: an evaluation. Comput J 20:359–363. https://doi.org/10.1093/comjnl/20.4.359

    Article  Google Scholar 

  • Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JFM, Ferreira ME (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol 4(11):1–10

  • Moretzsohn MC, Leoi L, Proite K, Guimaraes PM, Leal-Bertioli SC, Gimenes MA, Martins WS, Valls JFM, Grattapaglia D, Bertioli DJ (2005) A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet 111(6):1060–1071

    Article  CAS  PubMed  Google Scholar 

  • Nie X, Huang C, You C, Li W, Zhao W, Shen C, Zhang B, Wang H, Yan Z, Dai B, Wang M, Zhang X, Lin Z (2016) Genome-wide SSR-based association mapping for fiber quality in nation-wide upland cotton inbreed cultivars in China. BMC Genomics 17:352–367. https://doi.org/10.1186/s12864-016-2662-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira JC, Rufino PB, Azêvedo HSFS, Sousa ACB, Assis GML, Silva LM, Sebbenn AM, Campos T (2019) Inferring mating system parameters in forage peanut, Arachis pintoi, for Brazilian Amazon conditions. Acta Amaz 49(4):277–282. https://doi.org/10.1590/1809-4392201900200

    Article  Google Scholar 

  • Oliveira JC, Silva CC, Souza AP, Campos T (2020) A modified protocol for total RNA isolation from forage peanuts. South American Journal of Basic Education, Technical and Technological 7(1):683–687

    Google Scholar 

  • Ó’Maoiléidigh DS, Graciet E, Wellmer F (2014) Gene networks controlling Arabidopsis thaliana flower development. New Phytol 201(1):16–30. https://doi.org/10.1111/nph.12444

    Article  PubMed  Google Scholar 

  • Palmieri DA, Bechara MD, Curi RA, Gimenes MA, Lopes CR (2005) Novel polymorphic microsatellite markers in section Caulorrhizae (Arachis, Fabaceae). Mol Ecol Notes 5(1):77–79. https://doi.org/10.1111/j.1471-8286.2004.00838.x

    Article  CAS  Google Scholar 

  • Palmieri DA, Bechara MD, Curi RA, Monteiro JP, Valente SES, Gimenes MA, Lopes CR (2010) Genetic diversity analysis in the section Caulorrhizae (genus Arachis) using microsatellite markers. Genet Mol Biol 33(1):109–118. https://doi.org/10.1590/S1415-47572010005000001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmieri DA, Hoshino AA, Bravo JP, Lopes CR, Gimenes MA (2002) Isolation and characterization of microsatellite loci from the forage species Arachis pintoi (Genus Arachis). Mol Ecol Notes 2(4):551–553. https://doi.org/10.1046/j.1471-8286.2002.00317.x

    Article  CAS  Google Scholar 

  • Pandey MK, Agarwal G, Kale SM, Clevenger J, Nayak SN, Sriswathi M, Varshney RK, (2017) Development and evaluation of a high density genotyping ‘Axiom_Arachis SNPs for accelerating genetics and breeding in groundnut. Sci Rep 7:40577. https://doi.org/10.1038/srep40577

  • Peng Z, Gallo M, Tillman BL, Rowland D, Wang J (2016) Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.). Mol. Genet. Genomics 291(1):363–381.

  • Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JPT, Hyvönen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9(6):1–31. https://doi.org/10.1186/1746-4811-9-6

    Article  CAS  Google Scholar 

  • Rosa PM, Campos T, Sousa ACB, Sforça DA, Torres GAM, Souza AP (2010) Potato cultivar identifi cation using molecular markers. Pesq Agropec Bras 45(1):110–113. https://doi.org/10.1590/S0100-204X2010000100015

    Article  Google Scholar 

  • Rose TJ, Kearney LJ, Morris S, Van Zwieten L, Erler DV (2019) Pinto peanut cover crop nitrogen contributions and potential to mitigate nitrous oxide emissions in subtropical coffee plantations. Sci Total Environ 656:108–117

    Article  CAS  PubMed  Google Scholar 

  • Santos JCF, Cunha AJ, Melo B (2014) Soil cover and weed control on coffee intercropping perennial legume. Int J Appl Sci Technol 4:149–157

    Google Scholar 

  • Shah J, Zeier J (2013) Long-distance communication and signal amplification in systemic acquired resistance. Front Plant Sci 4:30. https://doi.org/10.3389/fpls.2013.00030

    Article  PubMed  PubMed Central  Google Scholar 

  • Shirasawa K, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertioli SC, Thudi M, Pandey MK, Rami JF, Fonceka D, Gowda MVC, Qin H, Guo B, Hong Y, Liang X, Hirakawa H, Tabata S, Isobe S (2013) Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res 20(2):173–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa K, Hirakawa H, Tabata S, Hasegawa M, Kiyoshima H, Suzuki S, Sasamoto S, Watanabe A, Fujishiro T, Isobe S (2012) Characterization of active miniature inverted-repeat transposable elements in the peanut genome. Theor Appl Genet 124(8):1429–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa K, Kuwata C, Watanabe M, Fukami M, Hirakawa H, Isobe S (2016) Target amplicon sequencing for genotyping genome-wide single nucleotide polymorphisms identified by whole-genome re-sequencing in peanut. Plant Genome 9(3):1–8

    Article  CAS  Google Scholar 

  • Simeão RM, Sousa ACB, Jank L, Souza AP (2015) Genome-wide selection for apomixis in Panicum maximum. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/134236/1/9-10-Simeao-et-al-ISFB.pdf. Accessed 20 January 2022

  • Taheri S, Lee Abdullah T, Yusop MR, Hanafi MM, Sahebi M, Azizi P, Shamshiri RR (2018) Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants. Molecules 23(2):399–419. https://doi.org/10.3390/molecules23020399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanwar UK, Pruthi V, Randhawa GS (2017) RNA-Seq of Guar (Cyamopsis tetragonoloba, L. Taub.) leaves: de novo transcriptome assembly, functional annotation and development of genomic resources. Front Plant Sci 8:91. https://doi.org/10.3389/fpls.2017.00091

  • Terra ABC, Florentino LA, Rezende AV, Silva NCD (2019) Forage legumes in pasture recovery in Brazil. Revista de Ciências Agrárias 42(2):305–313. https://doi.org/10.19084/rca.16016

  • Tessier C, David J, This P, Boursiquot JM, Charrier A (1999) Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor Appl Genet 98:171–177. https://doi.org/10.1007/s001220051054

    Article  CAS  Google Scholar 

  • Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106 (3):411–422

  • Valls JFM, Costa IC, Custodio AR (2013) A novel trifoliolate species of Arachis (Fabaceae) and further comments on the taxonomic section Trierectoides. Bonplandia 22:91–97

    Article  Google Scholar 

  • Valls JFM, Simpson CE (2005) New species of Arachis (Leguminosae) from Brazil Paraguay and Bolivia. Bonplandia 14:35–63

    Article  Google Scholar 

  • Valls JFM, Simpson CE (2017) A new species of Arachis (Fabaceae) from Mato Grosso, Brazil, related to Arachis matiensis. Bonplandia 26:143–149

    Article  Google Scholar 

  • Varshney RK, Grosse I, Hähnel U, Siefken R, Prasad M, Stein N, Langridge P, Altschmied L, Graner A (2006) Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theor Appl Genet 113:239–250. https://doi.org/10.1007/s00122-006-0289-z

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Lei Y, Yan L, Wan L, Cai Y, Yang Z, Lv J, Zhang X, Xu C, Liao B (2018) Development and validation of simple sequence repeat markers from Arachis hypogaea transcript sequences. The Crop Journal 6(2):172–180. https://doi.org/10.1016/j.cj.2017.09.007

    Article  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, vol 4: variability within and among natural populations. University of Chicago Press, Chicago

  • Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang X, Li Y (2012) De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genomics 13:90. https://doi.org/10.1186/1471-2164-13-90

  • Zhao J, Huang L, Ren X, Pandey MK, Wu B, Chen Y, Zhou X, Chen W, Xia Y, Li Z, Luo H, Lei Y, Varshney RK, Liao B, Jiang H (2017) Genetic variation and association mapping of seed-related traits in cultivated peanut (Arachis hypogaea L.) using single-locus simple sequence repeat markers. Front Plant Sci 8:2105. https://doi.org/10.3389/fpls.2017.02105

  • Zhong R, Mm Z, Zhao C, Hou L, Li C, Wang X, Tang R, Xia H (2016) SSR marker development from peanut gynophore transcriptome sequencing. Plant Breed 135(1):111–117. https://doi.org/10.1111/pbr.12336

    Article  CAS  Google Scholar 

  • Zhou X, Xia Y, Ren X, Chen Y, Huang L, Huang S, Liao B, Lei Y, Yan L, Jiang H (2014) Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics 15(351):1–14

    Google Scholar 

  • Zu Ermgassen EKHJ, Alcântara MP, Balmford A, Barioni L, Neto FB, Bettarello MMF, Brito G, Carrero GC, Florence EAS, Garcia E, Gonçalves ET, Da Luz CT, Mallman GM, Strassburg BBN, Valentim JF, Latawiec A (2018) Results from on-the-ground efforts to promote sustainable cattle ranching in the Brazilian Amazon. Sustainability 10:1301–1326. https://doi.org/10.3390/su10041301

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the staff of the Life Sciences Core Facility (LaCTAD) from the State University of Campinas (UNICAMP) for the Genomics analysis. Also, the authors thanked researcher José Francisco Montenegro Valls from Embrapa Genetic Resources and Biotechnology (CENARGEN) for the plant material provided for this study.

Funding

This work received financial support from Federal Government of Brazil through the “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq), Government of the State of Acre through the “Fundação de Amparo à Pesquisa do Estado do Acre” (FAPAC—TO 024/2018), and “Empresa Brasileira de Pesquisa Agropecuária” (Embrapa).

Author information

Authors and Affiliations

Authors

Contributions

TC, APS, EFF, and GMLA designed the study and revised the manuscript. JCO, ALDS, LMS, CCS, and EFF performed material preparation, data collection, and analysis. LPP revised the functional annotation and gene ontology. All of the authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Tatiana de Campos.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for Publication

All authors consent to publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Messages

The study presents the first SSR markers derived from the transcriptome of Arachis pintoi which were highly informative and can access genetic variability, distinguish cultivars, and have a high cross-amplification rate in other Arachis species.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, J.C., da Silva, A.L.D., da Silva, L.M. et al. Novel Microsatellite Markers Derived from Arachis pintoi Transcriptome Sequencing for Cross-Species Transferability and Varietal Identification. Plant Mol Biol Rep 42, 183–192 (2024). https://doi.org/10.1007/s11105-023-01402-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-023-01402-9

Keywords

Navigation