Skip to main content
Log in

OsSGT1 Is a Glucosyltransferase Gene Involved in the Glucose Conjugation of Phenolics in Rice

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Phenolics are a class of plant secondary metabolites that play important roles in plant growth and environmental adaptation. Glucosylation of phenolics is one of the molecular mechanisms controlling phenolics homeostasis. However, the relevant glucosyltransferases are largely unknown. In this study, a putative family 1 glucosyltransferase gene OsSGT1 was cloned from rice due to its close homology with the previously reported phenolics-related glucosyltransferases UGT84A1-A4, and the phylogenetic relationship of OsSGT1 with homologs from other species was investigated. Recombinant OsSGT1 protein showed strong activity towards phenolics to form their glucose conjugates. This is the first identified natural phenolics-related glucosyltransferase in rice. In addition, the expression patterns of OsSGT1 in different tissues of rice indicated that OsSGT1 was predominantly expressed in the old leaves and dough grains, suggesting that OsSGT1 might be involved in the maturation process of rice by regulating phenolic metabolism, and thus deepened our understanding on the roles of phenolics in rice growth and environmental adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blomstedt C-K, O'Donnell N-H, Bjarnholt N, Neale A-D, Hamill J-D, Møller B-L, Gleadow R-M (2016) Metabolic consequences of knocking out UGT85B1, the gene encoding the glucosyltransferase required for synthesis of dhurrin in Sorghum bicolor (L. Moench). Plant Cell Physiol 57:373–386

    Article  CAS  PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Bio 54:519–546

    Article  CAS  Google Scholar 

  • Booij-James I-S, Dube S-K, Jansen M-A, Edelman M, Mattoo A-K (2000) Ultraviolet-B radiation impacts light-mediated turnover of the photosystem II reaction center heterodimer in Arabidopsis mutants altered in phenolic metabolism. Plant Physiol 124:1275–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brazier-Hicks M, Gershater M, Dixon D, Edwards R (2018) Substrate specificity and safener inducibility of the plant UDP-glucose-dependent family 1 glycosyltransferase super-family. Plant Biotechnol J 16:337–348

    Article  CAS  PubMed  Google Scholar 

  • Chong J, Baltz R, Fritig B, Saindrenan P (1999) An early salicylic acid-, pathogen- and elicitor-inducible tobacco glucosyltransferase: role in compartmentalization of phenolics and H2O2 metabolism. FEBS Lett 458:204–208

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke H, Grosche J, Illes P, Allgaier C (2002) 5,7-Dihydroxytryptamine—a selective marker of dopaminergic or serotonergic neurons. Naunyn Schmiedeberg's Arch Pharmacol 366:315–318

    Article  CAS  Google Scholar 

  • Grace S-C, Logan B-A (2000) Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philos Trans R Soc Lond Ser B Biol Sci 355:1499–1510

    Article  CAS  Google Scholar 

  • Hou B-K, Lim E-K, Higgins G-S, Bowles D-J (2004) N-Glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J Biol Chem 279:47822–47832

    Article  CAS  Google Scholar 

  • Langenbach C, Campe R, Schaffrath U, Goellner K, Conrath U (2013) UDP-glucosyltransferase UGT84A2/BRT1 is required for Arabidopsis nonhost resistance to the Asian soybean rust pathogen Phakopsora pachyrhizi. New Phytol 198:536–545

    Article  CAS  PubMed  Google Scholar 

  • Lanot A, Hodge D, Jackson R-G, George G-L, Elias L, Lim E-K, Vaistij F-E, Bowles D-J (2006) The glucosyltransferase UGT72E2 is responsible for monolignol 4-O-glucoside production in Arabidopsis thaliana. Plant J 48:286–295

    Article  CAS  Google Scholar 

  • Lim E-K, Ashford D-A, Hou B-K, Jackson R-G, Bowles D-J (2004) Arabidopsis glycosyltransferases as biocatalysts in fermentation for region selective synthesis of diverse quercetin glucosides. Biotechnol Bioeng 87:623–631

    Article  CAS  PubMed  Google Scholar 

  • Lin J-S, Huang X-X, Li Q, Cao Y, Bao Y, Meng X-F, Li Y-J, Fu C, Hou B-K (2016) UDP-glycosyltransferase 72B1 catalyzes the glucose conjugation of monolignols and is essential for the normal cell wall lignification in Arabidopsis thaliana. Plant J 88:26–42

    Article  CAS  Google Scholar 

  • Lunkenbein S, Bellido M, Aharoni A, Salentijn E-M, Kaldenhoff R, Coiner H-A, Muñoz-Blanco J, Schwab W (2006) Characterization of a UDP-glucose:cinnamate glucosyltransferase from strawberry. Plant Physiol 140:1047–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew S, Abraham T-E (2004) Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit Rev Biotechnol 24:59–83

    Article  CAS  PubMed  Google Scholar 

  • Meissner D, Albert A, Böttcher C, Strack D, Milkowski C (2008) The role of UDP-glucose:hydroxycinnamate glucosyltransferases in phenylpropanoid metabolism and the response to UV-B radiation in Arabidopsis thaliana. Planta 228:663–674

    Article  CAS  PubMed  Google Scholar 

  • Messner B, Thulke O, Schäffner A-R (2003) Arabidopsis glucosyltransferases with activities toward both endogenous and xenobiotic substrates. Planta 217:138–146

    CAS  PubMed  Google Scholar 

  • Nicholson R-L, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    Article  CAS  Google Scholar 

  • Ross J, Li Y, Lim E, Bowles D-J (2001) Higher plant glycosyltransferases. Genome Biol 2(3004):1–6

    Google Scholar 

  • Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichhart D (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276:36566–36574

    Article  CAS  PubMed  Google Scholar 

  • Thorsøe K-S, Bak S, Olsen C-E, Imberty A, Breton C, Lindberg Møller B (2005) Determination of catalytic key amino acids and UDP sugar donor specificity of the cyanohydrin glycosyltransferase UGT85B1 from Sorghum bicolor. Plant Physiol 139:664–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonekura-Sakakibara K, Fukushima A, Nakabayashi R, Hanada K, Matsuda F, Sugawara S, Inoue E, Kuromori T, Ito T, Shinozaki K, Wangwattana B, Yamazaki M, Saito K (2012) Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. Plant J 69:154–167

    Article  CAS  PubMed  Google Scholar 

Download references

Contributions

BKH and QL conceived and designed the research. QL, YYZ, and LC conducted the experiments. TTC and YJL contributed analytical tools and analyzed data. QL, TTC, and BKH wrote the manuscript. All authors read and approved the manuscript.

Funding

This study was financially supported by key R & D project of Shandong Province of China (no. 2018GNC110019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-kai Hou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Fig S1

HPLC analysis of reaction mixtures of different phenolics with heat-inactivated OsSGT1 as negative control. (a-e) denote sinapic acid, ferulic acid, caffeic acid, cinnamic acid and coumaric acid, respectively; 1 denotes the reactions with inactivated GST-OsSGT1. 2 denotes the authentic standards of phenolics. (DOCX 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhang, Yy., Chen, L. et al. OsSGT1 Is a Glucosyltransferase Gene Involved in the Glucose Conjugation of Phenolics in Rice. Plant Mol Biol Rep 37, 41–49 (2019). https://doi.org/10.1007/s11105-019-1134-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-019-1134-2

Keywords

Navigation