Skip to main content
Log in

Transcriptome Sequencing of Chickpea (Cicer arietinum L.) Genotypes for Identification of Drought-Responsive Genes Under Drought Stress Condition

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Chickpea (Cicer arietinum L.) is a pulse crop valued for its high protein content, grown in semi-arid tropics and Mediterranean regions. Its yield remains affected by biotic and abiotic stresses with drought alone being responsible for up to 50% annual loss of yield. Transcriptome analysis of a sensitive and a tolerant cultivar of chickpea has been done earlier to unravel the molecular basis for drought and salinity stress responses. In the present study, we performed transcriptome analysis of two drought-tolerant genotypes, BG-362 and P-256, under polyethylene glycol-simulated drought stress to decipher the genes and pathways that are commonly regulated in these genotypes. RNA-Seq using Illumina platform generated 152 million high-quality reads. Reference-guided assembly of genome yielded a total of 37,943 transcripts representing 22,701 genes. Among the 1624 genes that were observed to be differentially expressed under drought, 97 genes were common in both the genotypes. These included the upregulated genes, such as probable mannitol dehydrogenase, serine hydroxymethyltransferase 4-like, 17.5 kDa class I heat shock protein-like, cytochrome P450 81E8-like, and galactinol-sucrose galactosyltransferase-like, and downregulated genes, such as probable xyloglucan endotransglucosylase/hydrolase protein 23, abscisic acid 8′-hydroxylase 1-like, Calmodulin-like protein 11, and proline dehydrogenase 2 mitochondrial-like genes. A major finding was the involvement of transcription factors, including AP2-EREBP, bHLH, bZIP, C3H, MYB, NAC, WRKY, and MADS. The present study is the first comparative analysis of RNA-Seq data for two drought-tolerant chickpea genotypes. These findings would help in improving drought tolerance across chickpea genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal G, Jhanwar S, Priya P (2012) Comparative analysis of Kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers. PLoS One 7:e52443. https://doi.org/10.1371/journal.pone.0052443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anbanzhagan K, Bhatnagar-Mathur P, Vadez V, Reddy DS, Kishore PBK, Sharma KK (2015) DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes. Plant Cell Rep 34:199–210

    Article  CAS  Google Scholar 

  • Arteca RN, Tsai DS, Schlagnhaufer C, Mandava NB (1983) The effect of brassinosteroid on auxin-induced ethylene production by etiolated mung bean segments. Physiol Plant 59:539–544

    Article  CAS  Google Scholar 

  • Awari VR, Mate SN (2015) Effect of drought stress on early seedling growth of chickpea (Cicer arietinum L) genotypes. Int J Life Sci Res 2:2

  • Bhatnagar-Mathur P, Vadez V, Devi MJ, Lavanya M, Vani G, Sharma KK (2009) Genetic engineering of chickpea (Cicer arietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance. Mol Breed 23:591–606. https://doi.org/10.1007/s11032-009-9258-y

    Article  CAS  Google Scholar 

  • Bhattacharjee A, Jain M (2013) Transcription factor mediated abiotic stress signaling in rice. Plant Stress 7:16–25

    Google Scholar 

  • Bhauso TD, Thankappan R, Kumar A, Mishra GP, Dobaria JR, Rajam M (2014) Over-expression of bacterial mtlD gene confers enhanced tolerance to salt-stress and waterdeficit stress in transgenic peanut (Arachis hypogaea) through accumulation of mannitol. Aust J Crop Sci 8(3):413–421

    CAS  Google Scholar 

  • Buchanan C, Lim S, Salzman R et al (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58:699–720

    Article  CAS  PubMed  Google Scholar 

  • Buxton GF, Cyr DR, Dumbroff EB, Webb DP (1985) Physiological responses of three northern conifers to rapid and slow induction of moisture stress. Can J Bot 63:1171–1176

    Article  Google Scholar 

  • Chaudhary R, Kumar M, Sengar RS, Kumar P, Singh SK, Kumar Y (2017) Effect of salinity stress on photosynthesis and expression of salt tolerant genes in chickpea (Cicer arietinum L.). Int J Chem Stud 5:229–237

    Google Scholar 

  • Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davila Olivas NH, Coolen S, Huang P, Severing E, van Verk MC, Hickman R, Wittenberg AHJ, de Vos M, Prins M, van Loon JJA, Aarts MGM, van Wees SCM, Pieterse CMJ, Dicke M (2014) Effect of prior drought and pathogen stress on Arabidopsis transcriptome changes to caterpillar herbivory. New Phytol 210:1344–1356. https://doi.org/10.1111/nph.13847

    Article  CAS  Google Scholar 

  • Diab A, Teulat-Merah B, This D, Ozturk N, Benscher D, Sorrells M (2004) Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theor Appl Genet 109:1417–1425

    Article  CAS  PubMed  Google Scholar 

  • Dixon R, Paiva N (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan F, Ding J, Lee D, Lu X, Feng Y, Song W (2017) Overexpression of SoCYP85A1, a spinach cytochrome p450 gene in transgenic tobacco enhances root development and drought stress tolerance. Front Plant Sci 8:1909. https://doi.org/10.3389/fpls.2017.01909

    Article  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2014) Food and Agricultural Organization. Available at: http://faostat3. fao.org /

  • Gall HL, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plant 4:112–166

    Article  CAS  Google Scholar 

  • Garg R, Sahoo A, Tyagi AK, Jain M (2010) Validation of internal control genes for quantitative gene expression studies in chickpea (Cicer arietinum L.). Biochem Biophys Res Commun 396:283–288

    Article  CAS  PubMed  Google Scholar 

  • Garg R, Verma M, Agrawal S, Shankar R, Majee M, Jain M (2014) Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Res 21:69–84

    Article  CAS  PubMed  Google Scholar 

  • Garg R, Bhattacharjee A, Jain M (2015) Genome-scale transcriptomic insights into molecular aspects of abiotic stress responses in chickpea. Plant Mol Biol Report 33:388–400. https://doi.org/10.1007/s11105-014-0753-x

    Article  CAS  Google Scholar 

  • Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, Jain M (2016) Transcriptome analyses reveal genotype and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep 6. https://doi.org/10.1038/srep19228

  • Gupta SC, Rathore AK, Sharma SN, Saini RS (2000) Response of chickpea cultivars to water stress. Indian J Plant Physiol 5:274–276

    Google Scholar 

  • Gupta SD, Singh P, Kewat RN, Manjri Singh A (2015a) Effect of drought stress on carbohydrate content in drought tolerant and susceptible chickpea genotypes. J Crop Sci Biotechnol 4:35–38

    Google Scholar 

  • Gupta S, Wardhan V, Kumar A, Rathi D, Pandey A, Chakraborty S, Chakraborty N (2015b) Secretome analysis of chickpea reveals dynamic extracellular remodeling and identifies a Bet v1-like protein, CaRRP1 that participates in stress response. Sci Rep 5:18427. https://doi.org/10.1038/srep18427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, BhanuPrakash A, Mulaosmanovic B, Gujaria N, Krishnamurthy L, Gaur PM, KaviKishor PB, Shah T, Srinivasan R, Lohse M, Xiao Y, Town CD, Cook DR, May GD, Varshney RK (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9:922–931. https://doi.org/10.1111/j.1467-7652.2011.00625.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agr Expt Sta Cir 347(2):32

  • Iglesias MJ, Terrile MC, Bartoli CG, D’Ippólito, Casalongué CA (2010) Auxin signaling participates in the adaptive response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant Mol Biol 74:215–222

    Article  CAS  PubMed  Google Scholar 

  • Iquebal MA, Soren KR, Gangwar P, Shanmugavadivel PS, Aravind K, Singla D, Jaiswal S, Jasrotia RS, Chaturvedi SK, Singh NP, Varshney RK, Rai A, Kumar D (2017) Discovery of putative herbicide resistance genes and its regulatory network in chickpea using transcriptome sequencing. Front Plant Sci 8:958. https://doi.org/10.3389/fpls.2017.00958

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain M (2012) Next-generation sequencing technologies for gene expression profiling in plants. Brief Funct Genomics 11:63–70

    Article  CAS  PubMed  Google Scholar 

  • Jain D, Chattopadhyay D (2010) Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biol 10:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain M, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. Fed Eur Biochem Soc J 276:3148–3162

    CAS  Google Scholar 

  • Janz D, Behnke K, Schnitzler JP, Kanawati B, Schmitt-Kopplin P, Polle A (2010) Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biol 10:150. https://doi.org/10.1186/1471-2229-10-150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jhanwar S, Priya P, Garg R, Parida SK, Tyagi AK, Jain M (2012) Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnol. J. 10:690–702

    Article  CAS  PubMed  Google Scholar 

  • Joshi-Saha A, Kandali SR (2015) Repeat length variation in the 5′UTR of myo-inositol monophosphatase gene is related to phytic acid content and contributes to drought tolerance in chickpea (Cicer arietinum L.). J Exp Bot 66:5683–5690. https://doi.org/10.1093/jxb/erv156

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur S, Gupta AK, Kaur N (2011) Biochemical diversity in drought tolerant and susceptible chickpea genotypes. J Food Legumes 24:258–260

    Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    Article  CAS  PubMed  Google Scholar 

  • Kramer PJ (1983) Measurement and control of soil water. In: Water relations of plants. Academic Press, Toronto, Ontario, pp 84–119

    Chapter  Google Scholar 

  • Krizek DT (1985) Methods of inducing water stress in plants. Hortic Sci 20:1028–1038

    Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar PP (2013) Regulation of biotic and abiotic stress responses by plant hormones. Plant Cell Rep 32:943

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Nandwal AS, Yadav R, Bhasker P, Kumar S, Devi S, Singh S, Lather VS (2012) Assessment of chickpea genotypes for high temperature tolerance. Indian J Plant Physiol 17:225–232

    Google Scholar 

  • Kumar M, Mishra S, Dixit VK, Kumar M, Agrawal L, Chauhan PS, Nautiyal CS (2016) Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea. Plant Signal Behav 11:e1071004

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo bianco R, Rieger M, Sung SS (2000) Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. Physiol Plant 108:71–78

    Article  CAS  Google Scholar 

  • Mantri NL, Ford R, Coram TE, Pang EC (2007) Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genomics 8:303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantri NL, Ford R, Coram TE, Pang EC (2010) Evidence of unique and shared responses to major biotic and abiotic stresses in chickpea. Environ Exp Bot 69:286–292. https://doi.org/10.1016/j.envexpbot.2010.05.003

    Article  Google Scholar 

  • Meena MK, Ghawana S, Dwivedi V, Roy A, Chattopadhyay D (2015) Expression of chickpea CIPK25 enhances root growth and tolerance to dehydration and salt stress in transgenic tobacco. Front Plant Sci 6:683. https://doi.org/10.3389/fpls.2015.00683

    Article  PubMed  PubMed Central  Google Scholar 

  • Mexal J, Fisher JT, Osteryoung J, Reid CPP (1975) Oxygen availability in polyethylene glycol solutions and its implications in plant-water relations. Plant Physiol 55:20–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel BE (1970) Carbowax 6000 compared with mannitol as a suppressant of cucumber hypocotyl elongation. Plant Physiol 45:507–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P (2008) Super SAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9:553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno JI, Martin R, Castresana C (2005) Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J 41:451–463. https://doi.org/10.1111/j.1365-313X.2004.02311.x

    Article  CAS  PubMed  Google Scholar 

  • Muscolo A, Sidaria M, Anastasib U, Santonocetoa C, Maggioc A (2014) Effect of PEG-induced drought stress on seed germination of four lentil genotypes. J Plant Interact 9:354–363. https://doi.org/10.1080/17429145.2013.835880

    Article  CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen KH, Ha CV, Watanabe Y, Tran UT, Nasr Esfahani M, Nguyen DV, Tran LS (2015) Correlation between differential drought tolerability of two contrasting drought-responsive chickpea cultivars and differential expression of a subset of CaNAC genes under normal and dehydration conditions. Front Plant Sci 6:449

    PubMed  PubMed Central  Google Scholar 

  • O’Rourke JA, Bolon YT, Bucciarelli B, Vance CP (2014) Legume genomics: understanding biology through DNA and RNA sequencing. Ann Bot 113:1107–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan J, Li Z, Wang Q, Garrell AK, Liu M, Guan Y, Zhou W, Liu W (2018) Comparative proteomic investigation of drought responses in foxtail millet. BMC Plant Biol 18(315). https://doi.org/10.1186/s12870-018-1533-9

  • Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7:e30619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Cheng HY, Chen C, Yu XW, Yang JN, Gao WR, Shi QH, Zhang H, Li JG, Ma H (2009) A NAC transcription factor gene of chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes. J Plant Physiol 166:1934–1945. https://doi.org/10.1016/j.jplph.2009.05.013

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Bandhiwal N, Shah N, Kant C, Gaur R, Bhatia S (2014) Global transcriptome analysis of developing chickpea (Cicer arietinum L.) seeds. Front Plant Sci 5. https://doi.org/10.3389/fpls.2014.00698

  • Rabbani M, Maruyama K, Abe H et al (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavendra S, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    Article  CAS  PubMed  Google Scholar 

  • Ramalingam A, Kudapa H, Pazhamala LT, Garg V, Varshney RK (2015) Gene expression and yeast two-hybrid studies of 1R-MYB transcription factor mediating drought stress response in chickpea (Cicer arietinum L.). Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.01117

  • Rensink W, Iobst S, Hart A, Stegalkina S, Liu J, Buell C (2005) Gene expression profiling of potato responses to cold, heat, and salt stress. Funct Integr Genomics 5:201–207

    Article  CAS  PubMed  Google Scholar 

  • Schulte PJ, Marshall PE (1983) Growth and water relations of black locust and pine seedlings exposed to controlled water stress. Can J For Res 13:334–338

    Article  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Shankar R, Bhattacharjee A, Jain M (2016) Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses. Sci Rep 6. https://doi.org/10.1038/srep23719

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Shukla RK, Raha S, Tripathi V, Chattopadhyay D (2006) Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiol 142:113–123. https://doi.org/10.1104/pp.106.081752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh VK, Jain M (2014) Transcriptome profiling for discovery of genes involved in shoot apical meristem and flower development. Genom Data 2:135–138. https://doi.org/10.1016/j.gdata.2014.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RP, Yadava HS, Yadava AS (2007) Varietal indices for seed yield and drought tolerance index in chickpea under different environments. Legum Res 30:148–150

    Google Scholar 

  • Singh VK, Garg R, Jain M (2013) A global view of transcriptome dynamics during flower development in chickpea by deep sequencing. Plant Biotechnol J 11:691–701

    Article  CAS  PubMed  Google Scholar 

  • Soni V, Nayar S, Swarnkar PL (2017) Biochemical responses to drought stress in Cicer arietinum L. Int J Food Agri Vet Sci 7:7–12

    Google Scholar 

  • Sreenivasulu N, Sopory SK, Kavi Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene. 388:1–13

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Bassil E, Hamilton JS, Inupakutika MA, Zandalinas SI, Tripathy D, Luo Y, Dion E, Fukui G, Kumazaki A, Nakano R, Rivero RM, Verbeck GF, Azad RK, Blumwald E, Mittler R (2016) ABA is required for plant acclimation to a combination of salt and heat stress. PLoS One 11. https://doi.org/10.1371/journal.,pone.0147625

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought and cold inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426. https://doi.org/10.1046/j.0960-7412.2001.01227.x

    Article  CAS  PubMed  Google Scholar 

  • Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163:547–561

    Article  CAS  PubMed  Google Scholar 

  • Tenhaken R (2014) Cell wall remodeling under abiotic stress. Front Plant Sci 5:771

    PubMed  Google Scholar 

  • Tuteja N, Gill SS, Poltronieri P, Taurino M, Domenico SD, Bonsegna S, Santino A (2013) Activation of the jasmonate biosynthesis pathway in roots in drought stress. Plant Biotech. https://doi.org/10.1002/9783527675265.ch13

  • Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM, Siddique KHM, Town CD, Hoisington DA (2009) A comprehensive resource of drought and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics 10:523. https://doi.org/10.1186/1471-2164-10-523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar'an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Luo MC, Thudi M, Gowda CLL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S, Rathore A, Jukanti AK, Jayalakshmi V, Vemula A, Singh SJ, Yasin M, Sheshshayee MS, Viswanatha KP (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu Y, Jia Y, Gu H, Ma H, Yu T, Zhang H, Chen Q, Ma L, Gu A, Zhang J, Shi S, Ma H (2012) Transcriptional responses to drought stress in root and leaf of chickpea seedling. Mol Biol Rep 39:8147–8158

    Article  CAS  PubMed  Google Scholar 

  • Williamson JD, Stoop JMH, Massel MO, Conkling MA, Pharr DM (1995) Cloning and characterization of a mannitol dehydrogenase cDNA from plants; a potential role for the PR-protein ELI-3. Proc Natl Acad Sci U S A 92:7148–7152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwiazek JJ, Blake TJ (1990) Effects of preconditioning on electrolyte leakage and lipid composition in black spruce (Picea mariana) stressed with polyethylene glycol. Physiol Plant 79:71–77

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by New Initiative (as a Cross Flow Technology project) “Root Biology and its Correlation to Sustainable Plant Development and Soil Fertility” (Root SF; BSC0204) from the Council of Scientific and Industrial Research (CSIR), New Delhi, India. This manuscript has been assigned a manuscript communication number, IU/R&D/2018-MCN000276, by Dean, Research & Development, Integral University, Lucknow.

Author information

Authors and Affiliations

Authors

Contributions

PSC and MK conceived and designed the research. MK, IS, and ASC conducted the experiments. MK and ASC analyzed the transcriptome data. MK wrote the manuscript. PSC, MK, and MAY critically reviewed the manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Puneet Singh Chauhan.

Ethics declarations

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOC 1656 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Chauhan, A.S., Kumar, M. et al. Transcriptome Sequencing of Chickpea (Cicer arietinum L.) Genotypes for Identification of Drought-Responsive Genes Under Drought Stress Condition. Plant Mol Biol Rep 37, 186–203 (2019). https://doi.org/10.1007/s11105-019-01147-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-019-01147-4

Keywords

Navigation