Identification of QTLs Associated with Conversion of Sucrose to Hexose in Mature Fruit of Japanese Pear

Abstract

Sweetness is the most important trait for fruit breeding and is fundamentally determined by both total and individual sugar contents. We analyzed the contents of sucrose, fructose, glucose, and sorbitol in mature fruit in an F1 population derived from crossing modern Japanese pear cultivar ‘Akizuki’ and breeding line ‘373-55’. A genetic linkage map was constructed using simple sequence repeats (SSRs) and single-nucleotide polymorphisms (SNP). We identified two regions associated with individual sugar contents on linkage group (LG) 1 and LG 7. The percentages of the variance in sucrose, fructose, and glucose explained by the quantitative trait loci (QTLs) were 26.6, 15.9, and 18.5%, respectively, for the region on LG 1, and 22.2, 20.0, and 9.5%, respectively, for the region on LG 7. In both regions, genotypes associated with increases in sucrose were associated with decreases in both fructose and glucose. The 1.5-LOD support intervals of the QTLs on LGs 1 and 7 include SSRs within the regions flanking acid invertase genes PPAIV3 and PPAIV1, respectively. Because acid invertase is a key enzyme in the conversion of sucrose to hexose, these are promising candidates for genes underlying those QTLs and controlling individual sugar contents. We also found one region on LG 11 that explained 21.4% of the variation in total sugar content but was not significantly associated with variation for individual sugars. The information obtained in this study will accelerate research and breeding programs to improve fruit sweetness.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Byrne DH, Nikolic AN, Burns EE (1991) Variability in sugars, acids, firmness, and color characteristics of 12 peach genotypes. J Am Soc Hortic Sci 116:1004–1006

    CAS  Google Scholar 

  2. Celton JM, Tustin DS, Chagne D, Gardiner SE (2009) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 5:93–107

    Article  Google Scholar 

  3. Chen H, Song Y, Li L-T, Khan MA, Li X-G, Korban SS, Wu J, Zhang S-L (2015a) Construction of a high-density simple sequence repeat consensus genetic map for pear (Pyrus spp.). Plant Mol Biol Report 33:316–325

    CAS  Article  Google Scholar 

  4. Chen J, Wang N, Fang LC, Liang ZC, Li SH, Wu BH (2015b) Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biol 15:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cirilli M, Bassi D, Ciacciulli A (2016) Sugars in peach fruit: a breeding perspective. Hortic Res 3:15067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro EA, Gouzy J, Rees DJG, Guérif P, Muranty H, Durel CE, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, van de Weg E, Troggio M, Bucher E (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099–1106

    CAS  Article  PubMed  Google Scholar 

  7. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18–31

    CAS  Article  Google Scholar 

  8. Dondini L, Pierantoni L, Gaiotti F, Chiodini R, Tartarini S, Bazzi C, Sansavini S (2005) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol Breed 14:407–418

    Article  CAS  Google Scholar 

  9. Doty T (1976) Fructose sweetness: a new dimension. Cereal Foods World 21:62–63

    Google Scholar 

  10. Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159

    CAS  Article  PubMed  Google Scholar 

  11. Fernández-Fernández F, Harvey N, James C (2006) Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.). Mol Ecol Resour 6:1039–1041

    Article  CAS  Google Scholar 

  12. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Guan Y, Peace C, Rudell D, Verma S, Evans K (2015) QTLs detected for individual sugars and soluble solids content in apple. Mol Breed 35:135

    Article  CAS  Google Scholar 

  14. Guilford P, Prakash S, Zhu J, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus x domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254

    CAS  Article  Google Scholar 

  15. Hecke K, Herbinger K, Veberic R, Trobec M, Toplak H, Stampar F, Keppel H, Grill D (2006) Sugar-, acid- and phenol contents in apple cultivars from organic and integrated fruit cultivation. Eur J Clin Nutr 60:1136–1140

    CAS  Article  PubMed  Google Scholar 

  16. Hyun TK, Eom SH, Kim JS (2011) Genomic analysis and gene structure of the two invertase families in the domesticated apple (Malus x domestica Borkh.). Plant Omics 4:391–399

    CAS  Google Scholar 

  17. Iketani H, Yamamoto T, Katayama H, Uematsu C, Mase N, Sato Y (2010) Introgression between native and prehistorically naturalized (archaeophytic) wild pear (Pyrus spp.) populations in Northern Tohoku, Northeast Japan. Conserv Genet 11:115–126

    Article  Google Scholar 

  18. Iketani H, Katayama H, Uematsu C, Mase N, Sato Y, Yamamoto T (2012) Genetic structure of East Asian cultivated pears (Pyrus spp.) and their reclassification in accordance with the nomenclature of cultivated plants. Plant Syst Evol 298:1689–1700

    Article  Google Scholar 

  19. Illa E, Sargent DJ, Girona EL, Bushakra J, Cestaro A, Crowhurst R, Pindo M, Cabrera A, van der Knaap E, Iezzoni A, Gardiner S, Velasco R, Arus P, Chagne D, Troggio M (2011) Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evol Biol 11

  20. Ishimizu T, Inoue K, Shimonaka M, Saito T, Terai O, Norioka S (1999) PCR-based method for identifying the S-genotypes of Japanese pear cultivars. Theor Appl Genet 98:961–967

    CAS  Article  Google Scholar 

  21. Iwata H, Hayashi T, Terakami S, Takada N, Sawamura Y, Yamamoto T (2013) Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed Sci 63:125–140

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jung S, Cestaro A, Troggio M, Main D, Zheng P, Cho I, Folta KM, Sosinski B, Abbott A, Celton J-M (2012) Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies. BMC Genomics 13:129

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Kajiura I, Suzuki K, Yamazaki T (1975) Color chart for Japanese pear (Pyrus serotina var. culta Rehder). HortScience 10:257–258

    Google Scholar 

  24. Kajiura I, Yamaki S, Omura M, Akihama T, Machida Y (1979) Improvement of sugar content and composition in fruits, and classifications of East Asian pears by the principal component analysis of sugar compositions in fruits. Jpn J Breed 29:1–12

    CAS  Article  Google Scholar 

  25. Kanayama Y (2017) Sugar metabolism and fruit development in the tomato. Hortic J 86:417–425

    Article  Google Scholar 

  26. Katayama H, Adachi S, Yamamoto T, Uematsu C (2007) A wide range of genetic diversity in pear (Pyrus ussuriensis var. aromatica) genetic resources from Iwate, Japan revealed by SSR and chloroplast DNA markers. Genet Resour Crop Evol 54:1573–1585

    CAS  Article  Google Scholar 

  27. Kenis K, Keulemans J, Davey MW (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes 4:647–661

    Article  Google Scholar 

  28. Kikuchi A (1948) Horticulture of fruit trees, vol 1. Yokendo, Tokyo

    Google Scholar 

  29. Kliewer WM (1966) Sugars and organic acids of Vitis vinifera. Plant Physiol 41:923–931

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugenics 12:172–175

    Article  Google Scholar 

  31. Kotobuki K, Saito T, Machida Y, Sato Y, Abe K, Kurihara A, Ogata T, Terai O, Nishibata T, Kozono T, Fukuda H, Kihara T, Suzuki K (2002) New Japanese pear cultivar ‘Akizuki’. Bull Natl Inst Fruit Tree Sci 1:11–21 (In Japanese with English abstract)

    Google Scholar 

  32. Kunihisa M, Moriya S, Abe K, Okada K, Haji T, Hayashi T, Kim H, Nishitani C, Terakami S, Yamamoto T (2014) Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop. Breed Sci 64:240–251

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Li M, Feng F, Cheng L (2012) Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS One 7:e33055

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Liebhard R, Gianfranceschi L, Koller B, Ryder C, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol Breed 10:217–241

    CAS  Article  Google Scholar 

  37. Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus x domestica Borkh.). Plant Mol Biol 52:511–526

    CAS  Article  PubMed  Google Scholar 

  38. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  39. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Moriguchi T, Ishizawa Y, Sanada T (1990a) Differences in sugar composition in Prunus persica fruit and the classification by the principal component analysis. J Jpn Soc Hortic Sci 59:307–312

    CAS  Article  Google Scholar 

  41. Moriguchi T, Sanada T, Yamaki S (1990b) Seasonal fluctuations of some enzymes relating to sucrose and sorbitol metabolism in peach fruit. J Am Soc Hortic Sci 115:278–281

    CAS  Google Scholar 

  42. Moriguchi T, Abe K, Sanada T, Yamaki S (1992) Levels and role of sucrose synthase, sucrose-phosphate synthase, and acid invertase in sucrose accumulation in fruit of Asian pear. J Am Soc Hortic Sci 117:274–278

    CAS  Google Scholar 

  43. Moriya S, Iwanami H, Kotoda N, Haji T, Okada K, Terakami S, Mimida N, Yamamoto T, Abe K (2012) Aligned genetic linkage maps of apple rootstock cultivar ‘JM7’ and Malus sieboldii ‘Sanashi 63’ constructed with novel EST–SSRs. Tree Genet Genomes 8:709–723

    Article  Google Scholar 

  44. Nishio S, Hayashi T, Yamamoto T, Yamada M, Takada N, Kato H, Nishitani C, Saito T (2016a) Validation of molecular markers associated with fruit ripening day of Japanese pear (Pyrus pyrifolia Nakai) using variance components. Sci Hortic 199:9–14

    CAS  Article  Google Scholar 

  45. Nishio S, Takada N, Saito T, Yamamoto T, Iketani H (2016b) Estimation of loss of genetic diversity in modern Japanese cultivars by comparison of diverse genetic resources in Asian pear (Pyrus spp.). BMC Genet 17:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nishitani C, Terakami S, Sawamura Y, Takada N, Yamamoto T (2009) Development of novel EST-SSR markers derived from Japanese pear (Pyrus pyrifolia). Breed Sci 59:391–400

    CAS  Article  Google Scholar 

  47. Okada K, Tonaka N, Moriya Y, Norioka N, Sawamura Y, Matsumoto T, Nakanishi T, Takasaki-Yasuda T (2008) Deletion of a 236 kb region around S4-RNase in a stylar-part mutant S4 sm-haplotype of Japanese pear. Plant Mol Biol 66:389–400

    CAS  Article  PubMed  Google Scholar 

  48. Ozaki K, Uchida A, Takabe T, Shinagawa F, Tanaka Y, Takabe T, Hayashi T, Hattori T, Rai AK, Takabe T (2009) Enrichment of sugar content in melon fruits by hydrogen peroxide treatment. J Plant Physiol 166:569–578

    CAS  Article  PubMed  Google Scholar 

  49. Pancoast HM, Junk WR (1980) Handbook of sugars. AVI Publishing Co., Westport, pp 387–389

    Google Scholar 

  50. Pangborn R (1963) Relative taste intensities of selected sugars and organic acids. J Food Sci 28:726–733

    Article  Google Scholar 

  51. Quilot B, Wu BH, Kervella J, Genard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897

    CAS  Article  PubMed  Google Scholar 

  52. Saito T (2016) Advances in Japanese pear breeding in Japan. Breed Sci 66:46–59

    Article  PubMed  PubMed Central  Google Scholar 

  53. Salazar JA, Ruiz D, Campoy JA, Sánchez-Pérez R, Crisosto CH, Martínez-García PJ, Blenda A, Jung S, Main D, Martínez-Gómez P (2014) Quantitative trait loci (QTL) and Mendelian trait loci (MTL) analysis in Prunus: a breeding perspective and beyond. Plant Mol Biol Report 32:1–18

    Article  Google Scholar 

  54. Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116

    CAS  Article  PubMed  Google Scholar 

  55. Silfverberg-Dilworth E, Matasci C, Van de Weg W, Van Kaauwen M, Walser M, Kodde L, Soglio V, Gianfranceschi L, Durel C, Costa F (2006) Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genet Genomes 2:202–224

    Article  Google Scholar 

  56. Tamura F (2006) Japanese pear. In: Jpn Soc Hort Sci (ed) Horticulture in Japan 2006. Shoukadoh Publication, Kyoto, pp. 50–58

  57. Terakami S, Shoda M, Adachi Y, Gonai T, Kasumi M, Sawamura Y, Iketani H, Kotobuki K, Patocchi A, Gessler C, Hayashi T, Yamamoto T (2006) Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theor Appl Genet 113:743–752

    CAS  Article  PubMed  Google Scholar 

  58. Terakami S, Adachi Y, Iketani H, Sato Y, Sawamura Y, Takada N, Nishitani C, Yamamoto T (2007) Genetic mapping of genes for susceptibility to black spot disease in Japanese pears. Genome 50:735–741

    CAS  Article  PubMed  Google Scholar 

  59. Terakami S, Kimura T, Nishitani C, Sawamura Y, Saito T, Hirabayashi T, Yamamoto T (2009) Genetic linkage map of the Japanese pear ‘Housui’ identifying three homozygous genomic regions. J Jpn Soc Hortic Sci 78:417–424

    CAS  Article  Google Scholar 

  60. Terakami S, Nishitani C, Kunihisa M, Shirasawa K, Sato S, Tabata S, Kurita K, Kanamori H, Katayose Y, Takada N, Saito T, Yamamoto T (2014) Transcriptome-based single nucleotide polymorphism markers for genome mapping in Japanese pear (Pyrus pyrifolia Nakai). Tree Genet Genomes 10:853–863

    Article  Google Scholar 

  61. van Dyk MM, Soeker MK, Labuschagne IF, Rees DJG (2010) Identification of a major QTL for time of initial vegetative budbreak in apple (Malus x domestica Borkh.). Tree Genet Genomes 6:489–502

    Article  Google Scholar 

  62. Van Ooijen J (2006) JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  63. Van Ooijen J (2009) MapQTL® 6, Software for the mapping of quantitative trait in experiment populations of diploid species. Kyazma B V, Wageningen

    Google Scholar 

  64. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica). Nat Genet 42:833–841

    CAS  Article  PubMed  Google Scholar 

  65. Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheletti D, Rosyara UR, Cattonaro F, Vendramin E, Main D, Aramini V, Blas AL, Mockler TC, Bryant DW, Wilhelm L, Troggio M, Sosinski B, Aranzana MJ, Arús P, Iezzoni A, Morgante M, Peace C (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    CAS  Article  PubMed  Google Scholar 

  66. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    CAS  Article  PubMed  Google Scholar 

  67. Wu J, Gao H, Zhao L, Liao X, Chen F, Wang Z, Hu X (2007) Chemical compositional characterization of some apple cultivars. Food Chem 103:88–93

    CAS  Article  Google Scholar 

  68. Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Wu J, Li LT, Li M, Khan MA, Li XG, Chen H, Yin H, Zhang SL (2014) High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. J Exp Bot 65:5771–5781

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Yamaki S (2010) Metabolism and accumulation of sugars translocated to fruit and their regulation. J Jpn Soc Hortic Sci 79:1–15

    CAS  Article  Google Scholar 

  71. Yamaki S, Moriguchi T (1989) Seasonal fluctuation of sorbitol-related enzymes and invertase activities accompanying maturation of Japanese pear (Pyrus serotina Rehder var. culta Rehder) fruit. J Jpn Soc Hortic Sci 57:602–607

    CAS  Article  Google Scholar 

  72. Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9–18

    CAS  Article  PubMed  Google Scholar 

  73. Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T (2007) Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed Sci 57:321–329

    CAS  Article  Google Scholar 

  74. Yamamoto T, Terakami S, Takada N, Nishio S, Onoue N, Nishitani C, Kunihisa M, Inoue E, Iwata H, Hayashi T, Itai A, Saito T (2014) Identification of QTLs controlling harvest time and fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Breed Sci 64:351–361

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Zhang R, Wu J, Li X, Khan MA, Chen H, Korban SS, Zhang S (2013) An AFLP, SRAP, and SSR genetic linkage map and identification of QTLs for fruit traits in pear (Pyrus L.). Plant Mol Biol Report 31:678–687

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We are deeply indebted to all the people involved in the Japanese pear breeding program at the Institute of Fruit Tree and Tea Science, NARO.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sogo Nishio.

Electronic Supplementary Material

Supplementary Fig. 1

Distributions of individual sugars in an F1 population derived from crossing ‘Akizuki’ and ‘373-55’ (PDF 383 kb)

Supplementary Fig. 2

Linkage maps of ‘Akizuki’, ‘373-55’, and their integrated map. “CP” indicates that the integrated LG maps were built using the cross-pollination mode of JoinMap v. 4.1. Markers with segregation distortion are identified by asterisks (*P < 0.05; **P < 0.01; ***P < 0.001) (PDF 380 kb)

Supplementary Fig. 3

Significant QTLs for sucrose (SUC), fructose (FRU), glucose (GLU), sorbitol (SOR), and total sugar content (TSC). “CP” indicates that the integrated maps were built using the cross-pollination mode of JoinMap v. 4.1. Marker loci and significant QTLs are shown to the right of the linkage groups. Boxes and range lines indicate 1-LOD and 1.5-LOD support intervals, respectively. Markers with segregation distortion are identified by asterisks (*P < 0.05; **P < 0.01; ***P < 0.001) (PDF 1995 kb)

ESM 1

(XLSX 101 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nishio, S., Saito, T., Terakami, S. et al. Identification of QTLs Associated with Conversion of Sucrose to Hexose in Mature Fruit of Japanese Pear. Plant Mol Biol Rep 36, 643–652 (2018). https://doi.org/10.1007/s11105-018-1106-y

Download citation

Keywords

  • Pyrus pyrifolia
  • Fruit quality
  • Sugars
  • Acid invertase