Plant Molecular Biology Reporter

, Volume 36, Issue 2, pp 257–272 | Cite as

Silicon Coordinates DNA Replication with Transcription of the Replisome Factors in Diatom Algae

  • Jérôme Fournet
  • Christos Roussakis
Original Paper


Transcription is a key in coordinating the action of actors involved in DNA replication. The present research characterizes the impact of silicon on transcription for selected replicative genes in two diatom microalgae: Thalassiosira pseudonana and Phaeodactylum tricornutum. We show a relationship between the RNA expression of major replicative actors and silicon concentration using q-PCR and SSH. Thanks to phylogenetical homologies with diatoms and eukaryotic genes, these results could indicate a new regulation process of cell cycle for all living beings. Our results tend to confirm initially the central role of mRNA expression control in regulating DNA replication. Silicon, as an epigenomic element, seems to impact on the expression of 15 target genes belonging to the following groups: the polymerases group, POLA2 p68 and PRIM1 p49 (DNA polymerase α/primase), DNA polymerase ε POLE1, DNA polymerase δ POLD, the PCNA sliding clamp, the ternary complex (CMG group, CDC45, subunit PSF2 of GINS, helicase subunit MCM 2,3,6), and the “maturation-promoting factor” (MPF group, CDK-A (p34cdc2). Finally, we demonstrate, by comparing the two models, that silicon promotes the expression of POLD1, POLE1, and POLE3, and PSF2 mRNA expression.


Cell cycle Silicon Epigenetic Replisome Transcription level Diatom microalgae 



2-Oxoacid-dependent dioxygenase


Complementary DNA


Crossing point


Mitosis promoter factor


Origin recognition complex


Pre-replication complex

P. tricornutum

Phaeodactylum tricornutum


RNA interference


Replication protein A


Replication origins


Quantitative reverse transcription PCR


Silicic acid


S-phase-promoting factors


Suppressive subtractive hybridization

T. pseudonana

Thalassiosira pseudonana



We are grateful to JGI institute for providing access to T. pseudonana genomes. We thank Dr. Chris Bowler from E.N.S. for providing us the cell strain of Phaeodactylum tricornutum, and we also thank him for associating us to the Phaeodactylum tricornutum genotyping team. We thank the cell biology department of M.M.S. laboratory from the University of Nantes, for offering us a technical assistance.


The experiments were supported by funds from the Department Biology-Health and Chemistry-Biology from University of Sciences Nantes.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interests.

Supplementary material

11105_2018_1074_Fig7_ESM.jpg (721 kb)
Supplementary Fig. 2

(JPEG 721 kb)

11105_2018_1074_MOESM1_ESM.eps (2.2 mb)
High Resolution (EPS 2283 kb)
11105_2018_1074_Fig8_ESM.jpg (216 kb)
Supplementary Table 1

(JPEG 215 kb)

11105_2018_1074_MOESM2_ESM.eps (1.2 mb)
High Resolution (EPS 1223 kb)


  1. Akuginova ZD (2004) The specific features of tuberculosis in the biogeochemical subregions of the Republic of Chuvashia. Probl TuberkBoleznLegk:9–13Google Scholar
  2. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86CrossRefPubMedGoogle Scholar
  3. Barends S, Zehl M, Bialek S, de Waal E, Traag BA, Willemse J, Jensen ON, Vijgenboom E, van Wezel GP (2010) Transfer-messenger RNA controls the translation of cell-cycle and stress proteins in Streptomyces. EMBO 11:119–125CrossRefGoogle Scholar
  4. Blow JJ, Dutta A (2005) Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol 6:476–486CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ, Fudenberg G, Imakaev M, Mirny LA, Wu CT, Zhuang X (2016) Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529:418–422CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jézéquel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244CrossRefPubMedGoogle Scholar
  7. Breyne P, Dreesen R, Vandepoele K, De Veylder L, Van Breusegem F, Callewaert L, Rombauts S, Raes J, Cannoot B, Engler G, Inzé D, Zabeau M (2008) Transcriptome analysis during cell division in plants. PNAS 99:14825–14830CrossRefGoogle Scholar
  8. Calzada A, Hodgson B, Kanemaki M, Bueno A, Labib K (2005) Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev 19:1905–1919CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen L, Li J, Wu L, Yang M, Gao F, Yuan L (2014) Synergistic actions of olomoucine and bone morphogenetic protein-4 in axonal repair after acute spinal cord contusion. Neural Regen Res 9:1830–1838CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cho JN, Ryu JY, Jeong YM, Park J, Song JJ, Amasino RM, Noh B, Noh YS (2012) Control of seed germination by light-induced histone arginine demethylation activity. Dev Cell 22:736–748CrossRefPubMedGoogle Scholar
  11. Costas C, Sanchez ML, Sequeira-Mendes J, Gutierrez C (2011) Progress in understanding DNA replication control. Plant Sci 181:203–209CrossRefPubMedGoogle Scholar
  12. Duncker BP, Chesnokov IN, McConkey BJ (2009) The origin recognition complex protein family. Genome Biol 10:214CrossRefPubMedPubMedCentralGoogle Scholar
  13. Emmert-Streib F, Dehmer M (2009) Hierarchical coordination of periodic genes in the cell cycle of Saccharomyces cerevisiae. BMC Syst Biol 3:76CrossRefPubMedPubMedCentralGoogle Scholar
  14. Farrow SC, Facchini PJ (2014) Functional diversity of 2-oxoglutarate/FeII-dependent dioxygenases in plant metabolism. Front Plant Sci 5:524CrossRefPubMedPubMedCentralGoogle Scholar
  15. Francius G, Tesson B, Dague E, Martin-Jezequel V, Dufrene YF (2008) Nanostructure and nanomechanics of live Phaeodactylum tricornutum morphotypes. Environ Microbiol 10:1344–1356CrossRefPubMedGoogle Scholar
  16. Gupta C, Lopez JM, Azencott R, Bennett MR, Josic K, Ott W (2014) Modeling delay in genetic networks: from delay birth-death processes to delay stochastic differential equations. J Chem Phys 140(20):204108CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hermans F, Tsiporkova E (2007) Merging microarray cell synchronization experiments through curve alignment. Bioinformatics 23:64–70CrossRefGoogle Scholar
  18. Huang S, Zhang C (2011) The coordination between DNA replication initiation and other cell cycle events. In: Seligmann H (ed) DNA replication initiation and other cell cycle events, chapter 11Google Scholar
  19. Huysman MJ, Martens C, Vandepoele K, Gillard J, Rayko E, Heijde M, Bowler C, Inzé D, Van de Peer Y, De Veylder L, Vyverman W (2010) Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biol 11(2):R17CrossRefPubMedPubMedCentralGoogle Scholar
  20. Inze D, De Veylder L (2006) Cell cycle regulation in plant development. Annu Rev Genet 40:77–105CrossRefPubMedGoogle Scholar
  21. Israël M (2014) Signaling and metabolism in cancer: endocrine pancreas deficiency and hybrid anabolism—catabolism, drugs that undo the process. Cancer Ther 10:1–12Google Scholar
  22. Karschau J, Blow JJ, de Moura AP (2012) Optimal placement of origins for DNA replication. Phys Rev Lett 108(5)Google Scholar
  23. Kohzaki H, Murakami Y (2005) Transcription factors and DNA replication origin selection. Bioessays 27:1107–1116CrossRefPubMedGoogle Scholar
  24. Lee TI, Young RA (2013) Transcriptional regulation and its misregulation in disease. Cell 152(6):1237–1251CrossRefPubMedPubMedCentralGoogle Scholar
  25. Madison KE, Abdelmeguid MR, Jones-Foster EN, Nakai H (2012) A new role for translation initiation factor 2 in maintaining genome integrity. PLoS Genet 8(4)Google Scholar
  26. Mitani N, Chiba Y, Yamaji N, Ma JF (2009) Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21:2133–2142CrossRefPubMedPubMedCentralGoogle Scholar
  27. Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nougarede R, Della Seta F, Zarzov P, Schwob E (2000) Hierarchy of S-phase-promoting factors: yeast Dbf4-Cdc7 kinase requires prior S-phase cyclin-dependent kinase activation. Mol Cell Biol 20:3795–3806CrossRefPubMedPubMedCentralGoogle Scholar
  29. Okita TW, Volcani BE (1978) Role of silicon on diatom metabolism. IX. Differential synthesis of DNA polymerases and DNA-binding proteins during silicate starvation and recovery in Cylindrotheca fusiformis. Biochim Biophys Acta 519:76–86CrossRefPubMedGoogle Scholar
  30. Pierrefixe SC, Fonseca Guerra C, Bickelhaupt FM (2008) Hypervalent silicon versus carbon: ball-in-a-box model. Chemistry 14:819–828CrossRefPubMedGoogle Scholar
  31. Price CT, Koval KJ, Langford JR (2013) Silicon: a review of its potential role in the prevention and treatment of postmenopausal osteoporosis. Int J Endocrinol 2013(6):1–6Google Scholar
  32. Rafi MM, Epstein E, Falk RH (1997) Silicon deprivation causes physical abnormalities in wheat Triticuma estivum L. J Plant Physiol 151:497–501CrossRefGoogle Scholar
  33. Sapriel G, Quinet M, Heijde M, Jourdren L, Tanty V, Luo G, Le Crom S, Lopez PJ (2009) Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters. PLoS One 4(10):e7458CrossRefPubMedPubMedCentralGoogle Scholar
  34. Schwarz K, Milne DB (1972) Growth-promoting effects of silicon in rats. Nature 239(5371):333–334CrossRefPubMedGoogle Scholar
  35. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953CrossRefPubMedGoogle Scholar
  36. Siaut M, Heijde M, Mangogna M, Montsant A, Coesel S, Allen A, Manfredonia A, Falciatore A, Bowler C (2007) Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene 406:23–35CrossRefPubMedGoogle Scholar
  37. Stahlberg A, Kubista M, Pfaffl M (2004) Comparison of reverse transcriptases in gene expression analysis. Clin Chem 50(9):1678–1680CrossRefPubMedGoogle Scholar
  38. Swisher KD, Parker R (2010) Localization to, and effects of Pbp1, Pbp4, Lsm12, Dhh1, and Pab1 on stress granules in Saccharomyces cerevisiae. PLoS One 5(4):e10006CrossRefPubMedPubMedCentralGoogle Scholar
  39. Uchimura A, Hidaka Y, Hirabayashi T, Hirabayashi M, Yagi T (2009) DNA polymerase δ is required for early mammalian embryogenesis. PLoS One 4(1):e4184CrossRefPubMedPubMedCentralGoogle Scholar
  40. Vandenabeele P, Orrenius S, Zhivotovsky B (2005) Serine proteases and calpains fulfill important supporting roles in the apoptotic tragedy of the cellular opera. Cell Death Differ 12:1219–1224CrossRefPubMedGoogle Scholar
  41. Zhao P, Gu W, Wu S, Huang A, He L, Xie X, Gao S, Zhang B, Niu J, Peng Lin A, Wanga G (2014) Silicon enhances the growth of Phaeodactylum tricornutum Bohlin under green light and low temperature. Sci Rep 4:3958CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mer Molécule Sante (MMS) Institute, Department of Cell & Molecular BiologyUniversity of SciencesNantesFrance
  2. 2.IICiMed EA 1155University of SciencesNantesFrance

Personalised recommendations