Advertisement

Plant Molecular Biology Reporter

, Volume 35, Issue 5, pp 562–574 | Cite as

Identifying Transcription Factor Genes Associated with Yield Traits in Chickpea

  • Philanim Wungmarong Shimray
  • Deepak Bajaj
  • Rishi Srivastava
  • Anurag Daware
  • Hari D. Upadhyaya
  • Rajendra Kumar
  • Chellapilla Bharadwaj
  • Akhilesh K. Tyagi
  • Swarup K. ParidaEmail author
Original Paper

Abstract

Identification of potential transcription factor (TF) gene-derived natural SNP allelic variants regulating pod and seed yield component traits by large-scale mining and genotyping of SNPs in natural germplasm accessions coupled with high-resolution association mapping is vital for understanding the complex genetic architecture of quantitative yield traits in chickpea. In these perspectives, the current study employed a genome-wide GBS (genotyping-by-sequencing) and targeted gene amplicon resequencing-based simultaneous SNP discovery and genotyping assays, which discovered 1611 novel SNPs from 736 TF genes physically mapped on eight chromosomes and unanchored scaffolds of kabuli chickpea genome. These SNPs were structurally and functionally annotated in diverse synonymous and non-synonymous coding as well as non-coding regulatory and intronic sequence components of chickpea TF genes. A high-resolution genetic association analysis was performed by correlating the genotyping information of 1611 TF gene-based SNPs with multi-location/years field phenotyping data of six major pod and seed yield traits evaluated in a constituted association panel (326 desi and kabuli germplasm accessions) of chickpea. This essentially identified 27 TF gene-derived SNPs exhibiting significant association with six major yield traits, namely days to 50% flowering (DF), plant height (PH), branch number (BN), pod number (PN), seed number (SN) and seed weight (SW) in chickpea. These trait-associated SNPs individually and in combination explained 10–23% and 32% phenotypic variation respectively for the studied yield component traits. Interestingly, novel non-synonymous coding SNP allelic variants in five potential candidate TF genes encoding SBP (squamosal promoter binding protein), SNF2 (sucrose non-fermenting 2), GRAS [Gibberellic acid insensitive (GAI)-Repressor of GAI (RGA)-SCARECROW (SCR)], bZIP (basic leucine zipper) and LOB (lateral organ boundaries)-domain proteins associated strongly with DF, PH, BN, PN, SN and SW traits respectively were found most promising in chickpea. The functionally relevant molecular signatures (TFs and natural SNP alleles) delineated by us have potential to accelerate marker-assisted genetic enhancement by developing high pod and seed yielding cultivars of chickpea.

Keywords

Association mapping Chickpea Desi Kabuli SNP Transcription factor 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support by the core grant of National Institute of Plant Genome Research (NIPGR), New Delhi, India.

Supplementary material

11105_2017_1044_Fig4_ESM.gif (93 kb)
Figure S1

(GIF 93 kb)

11105_2017_1044_MOESM1_ESM.tif (4.5 mb)
High-resolution image (TIFF 4635 kb)
11105_2017_1044_MOESM2_ESM.pdf (227 kb)
Table S1 (PDF 226 kb)

References

  1. Agarwal P, Arora R, Ray S, Singh AK, Singh VP, Takatsuji H, Kapoor S, Tyagi AK (2007) Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol Biol 65:467–485CrossRefPubMedGoogle Scholar
  2. Agarwal P, Kapoor S, Tyagi AK (2011) Transcription factors regulating the progression of monocot and dicot seed development. BioEssays 33:189–202CrossRefPubMedGoogle Scholar
  3. Bajaj D, Upadhyaya HD, Khan Y, Das S, Badoni S, Shree T, Kumar V, Tripathy S, Gowda CLL, Singh S, Sharma S, Tyagi AK, Chattopadhyay D, Parida SK (2015a) A combinatorial approach of comprehensive QTL-based comparative genome mapping and transcript profiling identified a seed weight-regulating candidate gene in chickpea. Sci Rep 5:9264CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bajaj D, Saxena MS, Kujur A, Das S, Badoni S, Tripathi S, Upadhyaya HD, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015b) Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea. J Exp Bot 66:1271–1290CrossRefPubMedGoogle Scholar
  5. Bajaj D, Das S, Badoni S, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK (2015c) Genome-wide high-throughput SNP discovery and genotyping for understanding natural (functional) allelic diversity and domestication patterns in wild chickpea. Sci Rep 5:11627CrossRefGoogle Scholar
  6. Bajaj D, Upadhyaya HD, Das S, Kumar V, Gowda CLL, Sharma S, Sharma S, Tyagi AK, Parida SK (2016a) Identification of candidate genes for dissecting complex branch number trait in chickpea. Plant Sci 245:61–70CrossRefPubMedGoogle Scholar
  7. Bajaj D, Srivastava R, Tripathi S, Bharadwaj C, Upadhyaya HD, Tyagi AK, Parida SK (2016b) EcoTILLING-based association mapping efficiently delineates functionally relevant natural allelic variants of candidate genes governing agronomic traits in chickpea. Front Plant Sci 7:450CrossRefPubMedPubMedCentralGoogle Scholar
  8. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  9. Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29CrossRefPubMedPubMedCentralGoogle Scholar
  10. Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Laxmi, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22:193–203CrossRefPubMedPubMedCentralGoogle Scholar
  11. Das S, Singh M, Srivastava R, Bajaj D, Saxena MS, Rana JC, Bansal KC, Tyagi AK, Parida SK (2016) mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea. DNA Res 23:53–65PubMedGoogle Scholar
  12. Deokar AA, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, Warkentin TD, Tar'an B (2014) Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genomics 15:708CrossRefPubMedPubMedCentralGoogle Scholar
  13. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379CrossRefPubMedPubMedCentralGoogle Scholar
  14. Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A, Yadav G, Bhatia S, Chattopadhyay D, Tyagi AK, Jain M (2011) Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physiol 156:1661–1678CrossRefPubMedPubMedCentralGoogle Scholar
  15. Garg R, Bhattacharjee A, Jain M (2014) Genome-scale transcriptomic insights into molecular aspects of abiotic stress responses in chickpea. Plant Mol Biol Rep 33:388–400CrossRefGoogle Scholar
  16. Gaur R, Azam S, Jeena G, Khan AW, Choudhary S, Jain M, Yadav G, Tyagi AK, Chattopadhyay D, Bhatia S (2012) High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.) DNA Res 19:357–373CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gaur PM, Samineni S, Tripathi S, Varshney RK, Gowda CLL (2014) Allelic relationships of flowering time genes in chickpea. Euphytica 203:295–308CrossRefGoogle Scholar
  18. Gaur R, Jeena G, Shah N, Gupta S, Pradhan S, Tyagi AK, Jain M, Chattopadhyay D, Bhatia S (2015) High density linkage mapping of genomic and transcriptomic SNPs for synteny analysis and anchoring the genome sequence of chickpea. Sci Rep 5:13387CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gupta S, Nawaz K, Parween S, Roy R, Sahu K, Pole AK, Khandal H, Srivastava R, Kumar Parida S, Chattopadhyay D (2016) Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement. DNA Res 24:1–10PubMedCentralGoogle Scholar
  20. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Res 2:618–620Google Scholar
  21. Heang D, Sassa H (2012) Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice. PLoS One 7:e31325CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hiremath PJ, Kumar A, Penmetsa RV, Farmer A, Schlueter JA, Chamarthi SK, Whaley AM, Carrasquilla-Garcia N, Gaur PM, Upadhyaya HD, Kavi Kishor PB, Shah TM, Cook DR, Varshney RK (2012) Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnol J 10:716–732CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hudson KA, Hudson ME (2015) A classification of basic helix-loop-helix transcription factors of soybean. Int J Genomics 2015:603182CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM, Kishor PB, Nguyen H, Sutton T, Varshney RK (2015) Genotyping-by-sequencing based intra-specific genetic map refines a “QTL-hotspot” region for drought tolerance in chickpea. Mol Gen Genomics 290:559–571CrossRefGoogle Scholar
  25. Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.) Plant J 74:715–729CrossRefPubMedGoogle Scholar
  26. Jones SI, Vodkin LO (2013) Using RNA-Seq to profile soybean seed development from fertilization to maturity. PLoS One 8:e59270CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kale SM, Jaganathan D, Ruperao P, Chen C, Punna R, Kudapa H, Thudi M, Roorkiwal M, Katta MA, Doddamani D, Garg V, Kishor PB, Gaur PM, Nguyen HT, Batley J, Edwards D, Sutton T, Varshney RK (2015) Prioritization of candidate genes in “QTL-hotspot” region for drought tolerance in chickpea (Cicer arietinum L.) Sci Rep 5:15296CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107:2355–2360CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kudapa H, Azam S, Sharpe AG, Tar'an B, Li R, Deonovic B, Cameron C, Farmer AD, Cannon SB, Varshney RK (2014) Comprehensive transcriptome assembly of chickpea (Cicer arietinum L.) using sanger and next generation sequencing platforms: development and applications. PLoS One 9:e86039CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kujur A, Bajaj D, Saxena MS, Tripathi S, Upadhyaya HD, Gowda CLL, Singh S, Jain M, Tyagi AK, Parida SK (2013) Functionally relevant microsatellite markers from chickpea transcription factor genes for efficient genotyping applications and trait association mapping. DNA Res 20:355–373CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kujur A, Bajaj D, Saxena MS, Tripathi S, Upadhyaya HD, Gowda CLL, Singh S, Tyagi AK, Jain M, Parida SK (2014) An efficient and cost-effective approach for genic microsatellite marker-based large-scale trait association mapping: identification of candidate genes for seed weight in chickpea. Mol Breed 34:241–265CrossRefGoogle Scholar
  32. Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015a) Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea. Front Plant Sci 6:162CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kujur A, Upadhyaya HD, Shree T, Bajaj D, Das S, Saxena MS, Badoni S, Kumar V, Tripathy S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015b) Ultra-high density intra-specific genetic linkage maps accelerate identification of functionally relevant molecular tags governing important agronomic traits in chickpea. Sci Rep 5:9468CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015c) A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea. Sci Rep 5:11166CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kujur A, Upadhyaya HD, Bajaj D, Gowda CLL, Sharma S, Tyagi AK, Parida SK (2016) Identification of candidate genes and natural allelic variants for QTLs governing plant height in chickpea. Sci Rep 6:27968CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kumar A, Choudhary AK, Solanki RK, Pratap A (2011) Towards marker-assisted selection in pulses: a review. Plant Breed 130:297–313CrossRefGoogle Scholar
  37. Kumar V, Singh A, Amitha Mithra SV, Krishnamurthy SL, Parida SK, Jain S, Tiwari KK, Kumar P, Rao AR, Sharma SK, Khurana JP, Singh NK, Mohapatra T (2015) Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res 22:133–145CrossRefPubMedPubMedCentralGoogle Scholar
  38. Libault M, Joshi T, Benedito VA, Xu D, Udvardi MK, Stacey G (2009) Legume transcription factor genes: what makes legumes so special? Plant Physiol 151:991–1001CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 2:2397–2399CrossRefGoogle Scholar
  40. Malik N, Dwivedi N, Singh AK, Parida SK, Agarwal P, Thakur JK, Tyagi AK (2016) An integrated genomic strategy delineates candidate mediator genes regulating grain size and weight in rice. Sci Rep 6:23253CrossRefPubMedPubMedCentralGoogle Scholar
  41. Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genet 38:948–952CrossRefPubMedGoogle Scholar
  42. Martínez-Andújar C, Martin RC, Nonogaki H (2012) Seed traits and genes important for translational biology-highlights from recent discoveries. Plant Cell Physiol 53:5–15CrossRefPubMedGoogle Scholar
  43. Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146:333–350CrossRefPubMedPubMedCentralGoogle Scholar
  44. Parween S, Nawaz K, Roy R, Pole AK, Venkata Suresh B, Misra G, Venkata Suresh B, Misra G, Jain M, Yadav G, Parida SK, Tyagi AK, Bhatia S, Chattopadhyay D (2015) An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.) Sci Rep 5:12806CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pradhan S, Bandhiwal N, Shah N, Kant C, Gaur R, Bhatia S (2014) Global transcriptome analysis of developing chickpea (Cicer arietinum L.) seeds. Front Plant Sci 5:698CrossRefPubMedPubMedCentralGoogle Scholar
  46. Saxena MS, Bajaj D, Das S, Kujur A, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK (2014a) An integrated genomic approach for rapid delineation of candidate genes regulating agro-morphological traits in chickpea. DNA Res 21:695–710CrossRefPubMedPubMedCentralGoogle Scholar
  47. Saxena MS, Bajaj D, Kujur A, Das S, Badoni S, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK (2014b) Natural allelic diversity, genetic structure and linkage disequilibrium pattern in wild chickpea. PLoS One 9:e107484CrossRefPubMedPubMedCentralGoogle Scholar
  48. Singh VK, Garg R, Jain M (2013) A global view of transcriptome dynamics during flower development in chickpea by deep sequencing. Plant Biotechnol J 11:691–701CrossRefPubMedGoogle Scholar
  49. Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M, Takagi H, Garg V, Kumar V, Chitikineni A, Gaur PM, Sutton T, Terauchi R, Varshney RK (2016) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J 14:2110–2119CrossRefPubMedPubMedCentralGoogle Scholar
  50. Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, Nayak SN, Chaturvedi SK, Basu PS, Gangarao NV, Fikre A, Kimurto P, Sharma PC, Sheshashayee MS, Tobita S, Kashiwagi J, Ito O, Killian A, Varshney RK (2014) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS One 9:e96758CrossRefPubMedPubMedCentralGoogle Scholar
  51. Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang JY, Benedito V, Hofer JM, Chueng F, Town CD (2007) Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol 144:538–549CrossRefPubMedPubMedCentralGoogle Scholar
  52. Upadhyaya HD, Bajaj D, Das S, Saxena MS, Badoni S, Kumar V, Tripathi S, Sharma S, Tyagi AK, Parida SK (2015) A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea. Plant Mol Biol 89:403–420CrossRefPubMedGoogle Scholar
  53. Varshney RK (2016) Exciting journey of 10 years from genomes to fields and markets: some success stories of genomics-assisted breeding in chickpea, pigeon pea and groundnut. Plant Sci 242:98–107CrossRefPubMedGoogle Scholar
  54. Varshney RK, Mohan SM, Gaur PM, Gangarao NV, Pandey MK, Bohra A, Sawargaonkar SL, Chitikineni A, Kimurto PK, Janila P, Saxena KB, Fikre A, Sharma M, Rathore A, Pratap A, Tripathi S, Datta S, Chaturvedi SK, Mallikarjuna N, Anuradha G, Babbar A, Choudhary AK, Mhase MB, Bharadwaj C, Mannur DM, Harer PN, Guo B, Liang X, Nadarajan N, Gowda CLL (2013a) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 31:1120–1134CrossRefPubMedGoogle Scholar
  55. Varshney RK, Gaur PM, Chamarthi SK, Krishnamurthy L, Tripathi S, Kashiwagi J, Samineni S, Singh VK, Thudi M, Jaganthan D (2013b) Fast-track introgression of “QTL-hotspot” for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. Plant Genome 6:1–26Google Scholar
  56. Varshney RK, Song C, Saxena RK et al (2013c) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246CrossRefPubMedGoogle Scholar
  57. Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S, Rathore A, Jukanti AK, Jayalakshmi V, Vemula A, Singh SJ, Yasin M, Sheshshayee MS, Viswanatha KP (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.) Theor Appl Genet 127:445–462CrossRefPubMedGoogle Scholar
  58. Wang H, Wang H (2015) The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Mol Plant 8:677–688CrossRefPubMedGoogle Scholar
  59. Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, Jiang SY (2011) Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. J Integr Plant Biol 53:212–231CrossRefPubMedGoogle Scholar
  60. Wang Z, Cheng K, Wan L, Yan L, Jiang H, Liu S, Lei Y, Liao B (2015) Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes. BMC Genomics 16:1053CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yu JK, Paik H, Choi JP, Han JH, Choe JK, Hur CG (2010) Functional domain marker (FDM): an in silico demonstration in Solanaceae using simple sequence repeats (SSRs). Plant Mol Biol Rep 28:352–356CrossRefGoogle Scholar
  62. Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nature Genet 42:355–368CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zhang SD, Ling LZ, Yi TS (2015) Evolution and divergence of SBP-box genes in land plants. BMC Genomics 16:787CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Philanim Wungmarong Shimray
    • 1
  • Deepak Bajaj
    • 2
  • Rishi Srivastava
    • 2
  • Anurag Daware
    • 2
  • Hari D. Upadhyaya
    • 3
  • Rajendra Kumar
    • 4
  • Chellapilla Bharadwaj
    • 1
  • Akhilesh K. Tyagi
    • 2
    • 5
  • Swarup K. Parida
    • 2
    Email author
  1. 1.Division of Genetics, Indian Agricultural Research Institute (IARI)New DelhiIndia
  2. 2.National Institute of Plant Genome Research (NIPGR)New DelhiIndia
  3. 3.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)PatancheruIndia
  4. 4.U.P. Council of Agricultural ResearchLucknowIndia
  5. 5.Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations