Skip to main content
Log in

Identification and Symbiotic Phenotype Characterization of an OPDA Reductase Gene AsOPR1 in Chinese Milk Vetch

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

In higher plants, the 12-oxo-phytodienoic acid reductase (OPR) family mainly consists of two subgroups. OPR3-like enzymes belong to subgroup II, and they were proved to be key functional enzymes participating in jasmonic acid (JA) biosynthesis, while functions of OPR1-like enzymes classified into subgroup I remain largely unclear, particularly in symbiosis. This study identified and functionally characterized a gene encoding 12-oxophytodienoate reductase in Astragalus sinicus. Sequence homology analysis indicated that this gene encodes an OPR1-like enzyme. It was found that the gene expression of AsOPR1 was upregulated after inoculation with Mesorhizobium huakuii 7653R. Subcellular localization showed that in uninfected host plant cells, AsOPR1 was localized in the amyloplast, a differentiated form of plastid; while in the infected cells, AsOPR1 co-localized with rhizobia. Knockdown of the AsOPR1 gene decreased the nodule number to 34.6% that of the control roots, and significantly reduced the JA level in both transgenic roots and nodules, while overexpression of the AsOPR1 gene resulted in enlarged nodule meristem, but caused no changes in nodule number. Taken together, these results indicate that AsOPR1 may participate in the regulation of nodule formation and development, as well as affect endogenous JA metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal GK, Jwa NS, Shibato J (2003) Diverse environmental cues transiently regulate OsOPR1 of the “octadecanoid pathway” revealing its importance in rice defense/stress and development. Biochem Biophys Res Commun 310:1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Biesgen C, Weiler EW (1999) Structure and regulation of OPR1 and OPR2, two closely related genes encoding 12-oxophytodienoic acid-10,11-reductases from Arabidopsis thaliana. Planta 208:155–165

    Article  CAS  PubMed  Google Scholar 

  • Breithaupt C, Kurzbauer R, Clausen T (2009) Structural basis of substrate specificity of plant 12-oxophytodienoate reductases. J Mol Biol 392:1266–1277

    Article  CAS  PubMed  Google Scholar 

  • Browse J (2009) Jasmonate: preventing the maize tassel from getting in touch with his feminine side. Sci Signal 2:pe9

    Article  PubMed  Google Scholar 

  • Cho H-J, Widholm JM (2002) Improved shoot regeneration protocol for hairy roots of the legume Astragalus sinicus. Plant Cell Tissue Organ Cult 69:259–269

    Article  CAS  Google Scholar 

  • Dong W, Wang M (2013) Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging. Plant Physiol 161:1217–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foucher F, Kondorosi E (2000) Cell cycle regulation in the course of nodule organogenesis in Medicago. Plant Mol Biol 43:773–786

    Article  CAS  PubMed  Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy RWF, Burns RC, Holsten RD (1973) Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5:47–81

    Article  CAS  Google Scholar 

  • He Y, Gan S (2001) Identical promoter elements are involved in regulation of the OPR1 gene by senescence and jasmonic acid in Arabidopsis. Plant Mol Biol 47:595–605

    Article  CAS  PubMed  Google Scholar 

  • Held M, Hossain MS, Yokota K, Bonfante P, Stougaard J, Szczyglowski K (2010) Common and not so common symbiotic entry. Trends Plant Sci 15:540–545

    Article  CAS  PubMed  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–33

  • Kang H, Zhu H, Chu X, Yang Z, Yuan S, Yu D, Wang C, Hong Z, Zhang Z (2011) A novel interaction between CCaMK and a protein containing the Scythe_N ubiquitin-like domain in Lotus japonicus. Plant Physiol 155:1312–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinkema M, Gresshoff PM (2008) Investigation of downstream signals of the soybean autoregulation of nodulation receptor kinase GmNARK. Mol Plant-Microbe Interact 21:1337–1348

    Article  CAS  PubMed  Google Scholar 

  • Koo AJ, Howe GA (2009) The wound hormone jasmonate. Phytochemistry 70:1571–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lei L, Chen L, Shi X, Li Y, Wang J, Chen D, Xie F, Li Y (2014) A nodule-specific lipid transfer protein AsE246 participates in transport of plant-synthesized lipids to symbiosome membrane and is essential for nodule organogenesis in Chinese milk vetch. Plant Physiol 164:1045–1058

    Article  CAS  PubMed  Google Scholar 

  • Liechti R, Farmer EE (2002) The jasmonate pathway. Science 296:1649–1650

    Article  CAS  PubMed  Google Scholar 

  • Limpens E, Ivanov S, van Esse W, Voets G, Fedorova E, Bisseling T (2009) Medicago N2-fixing symbiosomes acquire the endocytic identity marker Rab7 but delay the acquisition of vacuolar identity. Plant Cell 21:2811–2828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodwig EM, Hosie AH, Bourdes A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS (2003) Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature 422:722–726

    Article  CAS  PubMed  Google Scholar 

  • Mabood F, Smith DL (2005) Pre-incubation of Bradyrhizobium japonicum with jasmonates accelerates nodulation and nitrogen fixation in soybean (Glycine max) at optimal and suboptimal root zone temperatures. Physiol Plant 125:311–323

    Article  CAS  Google Scholar 

  • Matsui H, Nakamura G (2004) Structure and expression of 12-oxophytodienoate reductase (subgroup I) genes in pea, and characterization of the oxidoreductase activities of their recombinant products. Mol Gen Genomics 271:1–10

    Article  CAS  Google Scholar 

  • Nakagawa T, Kawaguchi M (2006) Shoot-applied MeJA suppresses root nodulation in Lotus japonicus. Plant Cell Physiol 47:176–180

    Article  CAS  PubMed  Google Scholar 

  • Oka-Kira E, Kawaguchi M (2006) Long-distance signaling to control root nodule number. Curr Opin Plant Biol 9:496–502

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE, Downie JA (2004) Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 5:566–576

    Article  CAS  PubMed  Google Scholar 

  • Schaller F, Biesgen C, Müssig C, Altmann T, Weiler EW (2000) 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210(6):979–984

  • Schaller A, Stintzi A (2009) Enzymes in jasmonate biosynthesis—structure, function, regulation. Phytochemistry 70:1532–1538

    Article  CAS  PubMed  Google Scholar 

  • Seo HS, Li J, Lee SY, Yu JW, Kim KH, Lee SH, Lee IJ, Paek NC (2007) The Hypernodulating nts mutation induces jasmonate synthetic pathway in soybean leaves. Molecules and cells 24:185–193

    CAS  PubMed  Google Scholar 

  • Sobajima H, Takeda M, Sugimori M (2003) Cloning and characterization of a jasmonic acid-responsive gene encoding 12-oxophytodienoic acid reductase in suspension-cultured rice cells. Planta 216:692–698

    CAS  PubMed  Google Scholar 

  • Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci U S A 97(19):10625–10630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strassner J, Schaller F, Schaller A (2002) Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. Plant J 32:585–601

    Article  CAS  PubMed  Google Scholar 

  • Streng A, op den Camp R, Bisseling T, Geurts R (2011) Evolutionary origin of rhizobium nod factor signaling. Plant Signal Behav 6:1510–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terakado J, Yoneyama T, Fujihara S (2006) Shoot-applied polyamines suppress nodule formation in soybean (Glycine max). J Plant Physiol 163:497–505

    Article  CAS  PubMed  Google Scholar 

  • Vick BA, Zimmerman DC (1984) Biosynthesis of jasmonic acid by several plant species. Plant Physiol 75:458–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter A, Mazars C, Maitrejean M (2007) Structural requirements of jasmonates and synthetic analogues as inducers of Ca2+ signals in the nucleus and the cytosol of plant cells. Angew Chem Int Ed 46:4783–4785

    Article  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zdyb A, Demchenko K, Heumann J, Mrosk C, Grzeganek P, Gobel C, Feussner I, Pawlowski K, Hause B (2011) Jasmonate biosynthesis in legume and actinorhizal nodules. The New phytologist 189:568–579

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Subramanian S, Zhang Y, Yu O (2007) Flavone synthases from Medicagotruncatula are flavanone-2-hydroxylases and are important for nodulation. Plant Physiol 144:741–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the funds from the National Key Research and Development Program of China (grant no. 2016YFD0100702), the National Natural Science Foundation of China (grant no. 31371549, 31670243, and 31460056), the Fundamental Research Funds for the Central Universities (2016PY025), and the State Key Laboratory of Agricultural Microbiology (grant no. AMLKF2014). We are very grateful to Professor Zhongming Zhang for providing pCAMBIA1301-35S-int-T7 for the RNAi experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youguo Li.

Electronic supplementary material

ESM 1

(DOC 37 kb)

ESM 2

(PPTX 460 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, F., Lei, L., Chen, F. et al. Identification and Symbiotic Phenotype Characterization of an OPDA Reductase Gene AsOPR1 in Chinese Milk Vetch. Plant Mol Biol Rep 35, 469–479 (2017). https://doi.org/10.1007/s11105-017-1038-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-017-1038-y

Keywords

Navigation