Plant Molecular Biology Reporter

, Volume 35, Issue 2, pp 203–214 | Cite as

A Contig-Based Computational Prediction of Conserved miRNAs and Their Probable Role in Regulation of Cuticular Wax Biosynthesis in Banana

  • Megha H. Sampangi-Ramaiah
  • Kundapura V. Ravishankar
  • Ajitha Rekha
  • Kodathalu Seetharamaiah Shivashankara
  • Laxman R. Hunashikatti
Original Paper

Abstract

Banana has a high leaf area index and shallow root system, hence making it highly susceptible to water stress. One of the adaptive mechanisms is the deposition of cuticular wax on a leaf. Our previous analysis revealed the role of total cuticular wax, carbon chain length of the cuticular wax component, and the role of ester and alcohol wax compounds in maintaining the hydration of banana leaves which was further confirmed by gene expression analysis. To understand the regulatory mechanism of these wax genes in the present study, we have computationally mined and filtered miRNAs whose targets are involved in the wax biosynthetic process using M.balbisiana and M.acuminata transcriptome. Here, we predicted 96 and 62 conserved miRNA families and its targets in M.balbisiana and M.acuminata, respectively. Based on biochemical pathway, we filtered miRNAs and its targets which were involved in the wax biosynthetic process .Here, we report two miRNAs that are MbmiR531 whose target is KCS11 and MbmiR529 whose target is KCS10/FDH. The in silico characterization of MbmiR531 and MbmiR529 revealed that it had a strong, stable secondary structure with MFE of −23.4 and −26.5 kcal/mol, respectively, and MFEI value of −0.70 and −0.66 kcal/mol, respectively. Validation of the computational prediction was carried out on four high wax musa genotypes (990.6–1842.6 μg/dm2) and four low wax musa genotypes (424.1–780.2 μg/dm2) by qRT PCR which further revealed a negative relationship between the target gene and its miRNA thus indicating their role in wax biosynthesis regulation.

Keywords

Banana Cuticular wax Transcriptome KCS10/FDH KCS11 miRNA 

Supplementary material

11105_2016_1016_MOESM1_ESM.xlsx (44 kb)
ESM 1(XLSX 44 kb)
11105_2016_1016_MOESM2_ESM.xlsx (96 kb)
ESM 2(XLSX 96 kb)
11105_2016_1016_MOESM3_ESM.docx (1.5 mb)
ESM 3(DOCX 1504 kb)
11105_2016_1016_MOESM4_ESM.pdf (28 kb)
ESM 4(PDF 28 kb)
11105_2016_1016_MOESM5_ESM.pdf (42 kb)
ESM 5(PDF 42 kb)
11105_2016_1016_MOESM6_ESM.pdf (21 kb)
ESM 6(PDF 20 kb)
11105_2016_1016_MOESM7_ESM.pdf (20 kb)
ESM 7(PDF 20 kb)
11105_2016_1016_MOESM8_ESM.pdf (16 kb)
ESM 8(PDF 15 kb)
11105_2016_1016_MOESM9_ESM.pdf (18 kb)
ESM 9(PDF 18 kb)
11105_2016_1016_MOESM10_ESM.docx (18 kb)
ESM 10(DOCX 18 kb)
11105_2016_1016_MOESM11_ESM.docx (13 kb)
ESM 11(DOCX 12 kb)

References

  1. Balcells I, Cirera S, Busk PK (2011) Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol 11:70CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baldrich P, Campo S, Wu M-T, Liu T-T, Hsing Y-IC, Segundo BS (2015) MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors. RNA Biol 12:847–863CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barakat A, Wall K, Leebens-Mack J, Wang YJ, Carlson JE, Depamphilis CW (2007) Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants. Plant J 51:991–1003, PMID: 17635767CrossRefPubMedGoogle Scholar
  4. Barciszewska-Pacak M, Milanowska K, Knop K, Bielewicz D, Nuc P, Plewka P et al (2015) Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Front Plant Sci 6:410CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bernard A, Joubes JE (2013) Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 52:110–129. doi:10.1016/j.plipres.2012.10.002 CrossRefPubMedGoogle Scholar
  6. Bi F, Meng X, Ma C, Yi G (2015) Identification of miRNAs involved in fruit ripening in Cavendish bananas by deep sequencing. BMC Genomics 16:1CrossRefGoogle Scholar
  7. Busk PK (2014) A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinf 28(15):29. doi:10.1186/1471-2105-15-29 CrossRefGoogle Scholar
  8. Bustin SA, Nolan T (2004) Data analysis and interpretation. In: Bustin SA (ed) A-Z of quantitative PCR. International University line, CA, USA, pp 439–481Google Scholar
  9. Chai J, Feng R, Shi H, Ren M, Zhang Y, Wang J (2015) Bioinformatic identification and expression analysis of banana microRNAs and their targets. Plos One 10(4):e0123083CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report 11(2):113–116CrossRefGoogle Scholar
  11. Chen L, Zhong H et al (2011) Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta 234:377–390CrossRefPubMedGoogle Scholar
  12. D’Hont A, Denoeud F et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410):213–217CrossRefPubMedGoogle Scholar
  13. Davey MW, Gudimella R et al (2013) Draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter-and intra-specific Musa hybrids. BMC Genomics 14:683CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dehury B, Panda D, Sahu J, Sahu M, Sarma K, Barooah M et al (2013) In silico identification and characterization of conserved miRNAs and their target genes in sweet potato (Ipomoea batatas L.) Expressed Sequence Tags (ESTs). Plant Signal Behav 8:e26543CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ebercon A, Blum A, Jordan WR (1977) Rapid colorimetric method for epicuticular wax contest of sorghum leaves. Crop Sci 17:179–180. doi:10.2135/cropsci1977.0011183X001700010047x CrossRefGoogle Scholar
  16. Food and Agriculture Organization of the United Nations (FAO 2012) [http://faostat.fao.org]
  17. Gupta H, Tiwari T, Patel M, Mehta A, Ghosh A (2015) An approach to identify the novel miRNA encoded from H.Annuus EST sequences. Genom Data 6:139–144CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53CrossRefPubMedGoogle Scholar
  19. Joubes J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P et al (2008) The VLCFA elongase gene family 30 in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol Biol 67:547–566. doi:10.1007/s11103-008-9339-z CrossRefPubMedGoogle Scholar
  20. Khraiwesh B, Zhu J-K, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148CrossRefPubMedGoogle Scholar
  21. Kim J, Jung JH, Lee SB, Go YS, Kim HJ, Cahoon R et al (2013) Arabidopsis 3-ketoacyl-coenzyme A synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol 162:567–580CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:68–73. doi:10.1093/nar/gkt1181, PMID: 24275495CrossRefGoogle Scholar
  23. Kruszka K, Pacak A, Swida-Barteczka A, Nuc P, Alaba S, Wroblewska Z et al (2014) Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. J Exp Bot 65:6123, eru353CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12(6):721–727CrossRefPubMedGoogle Scholar
  25. Lee SB, Kim H, Kim RJ, Suh MC (2014) Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. Plant Cell Rep 33:1535–1546CrossRefPubMedGoogle Scholar
  26. Levitt J (1972) Responses of plants to environmental stresses. Academic Press, New YorkGoogle Scholar
  27. Lokesh U, Kiranmai K, Pandurangaiah M, Sudhakarbabu O, Nareshkumar A, Sudhakar C (2013) Role of plant fatty acid elongase (3 keto acyl-CoA synthase) gene in cuticular wax biosynthesis. J Agric Allied Sci 2:35–42Google Scholar
  28. Merchuk L, Saranga Y (2013) Breeding approaches to increasing water-use efficiency. In: Rengel Z (ed) Improving water and nutrient-use efficiency in food production systems. John Wiley & Sons Inc, Hoboken, pp 145–160Google Scholar
  29. Nobusawa T, Okushima Y, Nagata N, Kojima M, Sakakibara H, Umeda M (2013) Synthesis of very-long-chain fatty acids in the epidermis controls plant organ growth by restricting cell proliferation. Plos Biol 11:e1001531CrossRefPubMedPubMedCentralGoogle Scholar
  30. Numnark S, Mhuantong W, Ingsriswang S, Wichadakul D (2012) C-mii: a tool for plant miRNA and target identification. BMC Genomics 13:S16. doi:10.1186/1471-2164-13-S7-S16 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Prakash P, Rajakani R, Gupta V (2015) Transcriptome-wide identification of Rauvolfia serpentina microRNAs and prediction of their potential targets. Comput Biol Chem 61:62–74CrossRefPubMedGoogle Scholar
  32. Pruitt RE, Vielle-Calzada J-P, Ploense SE, Grossniklaus U et al (2000) FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proc Natl Acad Sci U S A 97:1311–1316CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ravishankar KV, Megha HS, Rekha A, Ganesh NK, Veerraju C (2015) Insights into Musa balbisiana and Musa acuminata species divergence and development of genic microsatellites by transcriptomics approach. Plant Genet 4:78–82CrossRefGoogle Scholar
  34. Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032. doi:10.1093/jexbot/52.363.2023 CrossRefPubMedGoogle Scholar
  35. Robinson J.C (1996) Banana and Plantains. Wallingford, UKGoogle Scholar
  36. Sampangi-Ramaiah MH, Ravishankar KV (2016) Current status of banana genome in the age of next generation sequencing. In: Mohandas S, Ravishankar KV (eds) Banana: genomics and transgenic approaches for genetic improvement. Springer, Singapore, pp 51–59CrossRefGoogle Scholar
  37. Sampangi-Ramaiah MH, Ravishankar KV, Seetharamaiah SK, Roy TK, Hunashikatti L, Rekha A, Shilpa P (2016) Barrier against water loss: relationship between epicuticular wax composition, gene expression and leaf water retention capacity in banana. Funct Plant Biol 43:492–501CrossRefGoogle Scholar
  38. Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Plant Biol 59:683CrossRefGoogle Scholar
  39. Seo PJ, Park C-M (2011) Cuticular wax biosynthesis as a way of inducing drought resistance. Plant Signal Behav 6:1043–1045CrossRefPubMedPubMedCentralGoogle Scholar
  40. Seo PJ, Lee SB, Suh MC, Park M-J, Go YS, Park C-M (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152CrossRefPubMedPubMedCentralGoogle Scholar
  41. Shepherd T, Wynne Griffiths D (2006) The effects of stress on plant cuticular waxes. New Phytol 171:469–499CrossRefPubMedGoogle Scholar
  42. Wang M, Wang Q, Wang B (2012) Identification and characterization of microRNAs in Asiatic cotton (Gossypium arboreum L.). Plos One 7:e33696CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wen J-Z, Liao J-Y, Zheng L-L, Xu H, Yang J-H, Guan D-G et al (2014) A contig-based strategy for the genome-wide discovery of MicroRNAs without complete genome resources. Plos One 9(2):e88179CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wienken CJ, Baaske P, Duhr S, Braun D (2011) Thermophoretic melting curves quantifies the conformation and stability of RNA and DNA. Nucleic Acids Res 39(8):e52–e52. doi:10.1093/nar/gkr035, PMC 3082908, PMID 21297115CrossRefPubMedPubMedCentralGoogle Scholar
  45. Xia K, Ou X, Gao C, Tang H, Jia Y, Deng R, Xu X et al (2015) OsWS1 involved in cuticular wax biosynthesis is regulated by osa-miR1848. Plant Cell Environ 38:2662–2673CrossRefPubMedGoogle Scholar
  46. Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K, Saedler H (1999) Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell 11:2187–2201CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yuan S, Li Z, Li D, Yuan N, Hu Q, Luo H (2015) Constitutive expression of rice MicroRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol 169(1):576–593CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zhang B, Pan X, Cox S, Cobb G, Anderson T (2006) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 63:246–254CrossRefPubMedGoogle Scholar
  49. Zhang S-D, Ling L-Z, Zhang Q-F, Xu J-D, Cheng L (2015) Evolutionary Comparison of Two Combinatorial Regulators of SBP-Box Genes, MiR156 and MiR529, in Plants. Plos One 10(4):e0124621. doi:10.1371/journal.pone.0124621 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H et al (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Megha H. Sampangi-Ramaiah
    • 1
    • 2
  • Kundapura V. Ravishankar
    • 1
  • Ajitha Rekha
    • 3
  • Kodathalu Seetharamaiah Shivashankara
    • 4
  • Laxman R. Hunashikatti
    • 4
  1. 1.Division of Biotechnology, ICAR - Indian Institute of Horticultural ResearchBengaluruIndia
  2. 2.Department of Biotechnology, Centre for Post Graduate StudiesJain UniversityBengaluruIndia
  3. 3.Division of Fruit CropsICAR - Indian Institute of Horticultural ResearchBengaluruIndia
  4. 4.Division of Plant Physiology and BiochemistryICAR - Indian Institute of Horticultural ResearchBengaluruIndia

Personalised recommendations