Skip to main content

Advertisement

Log in

Phosphoproteomic Analysis in Phaseolus vulgaris Roots Treated with Rhizobium etli Nodulation Factors

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Legumes are unique in their ability to establish symbiotic interactions with rhizobacteria, providing a source of assimilable nitrogen; this symbiosis is regulated by complex signaling process between the plant and the bacteria. The participation of specific protein kinases during the initial steps of the nodulation process has been established. However, their substrates or the signaling networks implicated are not fully understood. Herein, a phosphoproteomic analysis of Phaseolus vulgaris roots treated for 24 h with specific Nod factors was performed using an immobilized metal ion affinity chromatography enrichment and two-dimensional gel electrophoresis approach with mass spectrometry identification. A total of 33 protein spots showing more than 1.5-fold shift were identified (17 protein spots in which the relative abundance increased and 16 that decreased). The majority of the identified root phosphoproteins displaying an increased relative abundance are presumed to have functions related to the biosynthesis and folding of proteins, energy metabolism, or cytoskeleton rearrangements, which reflect the metabolic status of the roots as being part of the developmental processes leading to nodule initiation and the importance of cytoskeleton rearrangement in the P. vulgaris–rhizobia symbiosis. The proteins in which relative abundance decreased are associated with defense and oxido-reduction processes, which could indicate a suppression of plant defense responses during the establishment of the rhizobia–legume interaction and an increase of reactive oxygen species production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afzal A, Srour A, Natarajan A, Saini N, Iqbal M, Geisler M, El Shemy A, Lightfoot D (2012) Resistance to soybean Cyst Nematode: Rhg1. J Plant Gen Sci 1:39–45

    Article  Google Scholar 

  • Aker J, de Vries S (2008) Plasma membrane receptor complexes. Plant Physiol 147:1560–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capoen W, Goormachtig S, De Rycke R, Schroeyers K, Holsters M (2005) SrSymRK, a plant receptor essential for symbiosome formation. P Natl Acad Sci USA 102:10369–10374

    Article  CAS  Google Scholar 

  • Cárdenas L, Domínguez J, Quinto C, López-Lara IM, Lugtenberg BJ, Spaink HP, Rademaker GJ, Haverkamp J, Thomas-Oates J (1995) Isolation, chemical structures and biological activity of the lipo-chitin oligosaccharide nodulation signals from Rhizobium etli. Plant Molecular Biology 29:453–464

    Article  PubMed  Google Scholar 

  • Cárdenas L, Vidali L, Domínguez J, Pérez H, Sánchez F, Hepler P, Quinto C (1998) Rearrangement of actin microfilaments in plant root hairs responding to Rhizobium etli nodulation signals. Plant Physiol 116:871–877

    Article  PubMed Central  Google Scholar 

  • Cárdenas L, Feijó JA, Kunkel JG, Sánchez F, Holdaway-Clarke T, Hepler P, Quinto C (1999) Rhizobium nod factors induce increases in intracellular free calcium and extracellular calcium influxes in bean root hairs. The Plant Journal 19:347–352

    Article  PubMed  Google Scholar 

  • Cárdenas L, Martinez A, Sanchez F, Quinto C (2008) Fast, transient and specific intracellular ROS changes in living root hair cells responding to Nod factors (NFs). Plant J 56:802–813

    Article  PubMed  Google Scholar 

  • Carol J, Dolan L (2006) The role of reactive oxygen species in cell growth: lessons from root hairs. J Exp Bot 57:1829–1834

    Article  CAS  PubMed  Google Scholar 

  • Collins MO, Yu L, Coba MP, Husi H, Campuzano I, Blackstock WP, Choudhary JS, Grant SG (2005) Proteomic analysis of in vivo phosphorylated synaptic proteins. J Biol Chem 280:5972–5982

    Article  CAS  PubMed  Google Scholar 

  • Dalton D, Russell S, Hanus F, Pascoe G, Evans H (1986) Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. P Natl Acad Sci USA 83:3811–3815

    Article  CAS  Google Scholar 

  • De Carvalho-Niebel F, Timmers A, Chabaud M, Defaux-Petras A, Barker DG (2002) The Nod factor-elicited annexin MtAnn1 is preferentially localised at the nuclear periphery in symbiotically activated root tissues of Medicagotruncatula. Plant J 32:343–352

    Article  PubMed  Google Scholar 

  • Dubrovska A, Soucheinyskyi S (2005) Efficient enrichment of intact phosphorylated proteins by modified immobilized metal-affinity chromatography. Proteomics 5:4678–4683

    Article  CAS  PubMed  Google Scholar 

  • Ehrhardt D, Wais R, Long S (1996) Calcium spiking in plant root hairs responding to rhizobium nodulation signals. Cell 85:673–681

    Article  CAS  PubMed  Google Scholar 

  • Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, G and Kiss (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    Article  CAS  PubMed  Google Scholar 

  • Esseling J, Lhuissier F, Emons A (2003) Nod factors-induced root hair curling: continuous polar growth towards the point of Nod factor application. Plant Physiol 132:1982–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farag M, Huhman D, Dixon R, Sumner L (2008) Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicagotruncatula cell cultures. Plant Physiol 146:387–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felle H, Kondorosi E, Kondorosi A, Schultze M (1998) The role of ion fluxes in nod factor signalling in Medicago sativa. Plant J 13:455–463

    Article  CAS  Google Scholar 

  • Goetting-Minesky MP, Mullin BC (1994) Differential gene expression in an actinorhizal symbiosis: evidence for a nodule-specific cysteine proteinase. Proc Natl Acad Sci U S A 91:9891–9895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrera IC, Predic-Atkinson J, Kleiner O, Soskic V, Godovac-Zimmermann J (2005) Enrichment of phosphoproteins for proteomic analysis using immobilized Fe (III)-affinity adsorption chromatography. J Proteome Res 4:1545–1553

    Article  CAS  PubMed  Google Scholar 

  • Kaetzel M, Mo Y, Mealy T, Campos B, Bergsma-Schutter W, Brisson A, Dedman J (2001) Phosphorylation mutants elucidate the mechanism of annexin IV-mediated membrane aggregation. Biochemistry 40:41925–44199

    Article  Google Scholar 

  • Koltai H, Dhandaydham M, Opperman C, Thomas J, Bird D (2001) Overlapping plant signal transduction pathways induced by a parasitic nematode and rhizobial endosymbiont. Mol Plant-Microbe Interac 14:1168–1177

    Article  CAS  Google Scholar 

  • Konopka-Postupolska D, Greg-Clark G, Hofmann A (2011) Structure, function and membrane interactions of plant annexins: an update. Plant Sci 181:230–241

    Article  CAS  PubMed  Google Scholar 

  • Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ, Franklin L, He J et al (2010) An integrated transcriptome atlas of the crop model Glycine max and its use in comparative analyses in plants. Plant J 63:86–99

    CAS  PubMed  Google Scholar 

  • Limpens E, Mirabella R, Fedorova E, Franken C, Franssen H, Bisseling T, Geurts R (2005) Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2. P Natl Acad Sci USA 102:10375–10380

    Article  CAS  Google Scholar 

  • Lukowitz W, Gillmor C, Scheible W (2000) Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol 123:795–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madeo F, Schlauer J, Zischka H, Mecke D, Fröhlich K (1998) Tyrosine phosphorylation regulates cell cycle-dependent nuclear localization of Cdc48p. Mol Biol Cell 9:131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen E, Madsen L, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S et al (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640

    Article  CAS  PubMed  Google Scholar 

  • Manning G, Whyte D, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  • Miller JB, Pratap A, Miyahara A, Zhou L, Bornemann S, Morris RJ, Oldroyd GE (2013) Calcium/Calmodulin-dependent protein kinase is negatively and positively regulated by calcium, providing a mechanism for decoding calcium responses during symbiosis signaling. Plant Cell 25:5053–5066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montiel J, Nava N, Cárdenas L, Sánchez-López R, Arthikala MK, Santana O, Sánchez F, Quinto C (2012) A Phaseolus vulgaris NADPH oxidase gene is required for root infection by Rhizobia. Plant Cell Physiol 53:1751–1767

    Article  CAS  PubMed  Google Scholar 

  • Nakagami H, Sugiyama N, Mochida K, Daudi A, Yoshida Y, Toyoda Y, Tomita M et al (2010) Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol 153:1161–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen T, Brechenmacher L, Aldrich J, Clauss T, Gritsenko M, Hixson K, Libault M et al (2012) Quantitative phosphoproteomic analysis of soybean root hairs inoculated with Bradyrhizobium japonicum. Mol Cel Proteomics 11:1140–1155

    Article  Google Scholar 

  • Oh C, Lee H, Kim H, An C (2004) Isolation and characterization of a root nodule-specific cysteine proteinase cDNA from soybean. J Plant Biol 47:216–220

    Article  CAS  Google Scholar 

  • Parida A, Das A (2005) Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safe 60:324–349

    Article  CAS  Google Scholar 

  • Peleg-Grossman S, Volpin H, Levine A (2007) Root hair curling and Rhizobium infection in Medicago truncatula are mediated by phosphatidylinositide-regulated endocytosis and reactive oxygen species. J Exp Bot 58:1637–1649

    Article  CAS  PubMed  Google Scholar 

  • Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gronlund M, Sato S et al (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592

    Article  CAS  PubMed  Google Scholar 

  • Ramu K, Peng H, Cook D (2002) Nod factor induction of reactive oxygen species production is correlated with expression of the early nodulin gene rip1 in Medicago truncatula. Mol Plant-Microbe Interact 15:522–528

    Article  CAS  PubMed  Google Scholar 

  • Rose C, Venkateshwaran M, Volkening J (2012) Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis. Mol Cel Proteomics 11:724–744

    Article  CAS  Google Scholar 

  • Sánchez-López R, Jáuregui D, Nava N, Alvarado-Affantranger X, Montiel J, Santana O, Sanchez F, Quinto C (2011) Down-regulation of SymRK correlates with a deficiency in vascular bundle development in Phaseolus vulgaris nodules. Plant Cell Environ 34:2109–2121

    Article  PubMed  Google Scholar 

  • Serna-Sanz A, Parniske M, Peck SC (2011) Phosphoproteome analysis of Lotus japonicusroots reveals shared and distinct components of symbiosis and defense. Mol Plant-Microbe Interact 24:932–937

    Article  CAS  PubMed  Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S et al (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    Article  CAS  PubMed  Google Scholar 

  • Timmers A, Auriac M, Truchet G (1999) Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126:3617–3628

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Dirección General de Asuntos del Personal Académico – Universidad Nacional Autónoma de México (IN201312). We thank Drs. Federico Sánchez and Rosana Sánchez-Lopez for critical reading of the manuscript and Olivia Santana for the purification of R. etli Nod factors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Quinto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jáuregui-Zúñiga, D., Ortega-Ortega, Y., Pedraza-Escalona, M. et al. Phosphoproteomic Analysis in Phaseolus vulgaris Roots Treated with Rhizobium etli Nodulation Factors. Plant Mol Biol Rep 34, 961–969 (2016). https://doi.org/10.1007/s11105-016-0978-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-016-0978-y

Keywords

Navigation