Skip to main content
Log in

Two AMT2-Type Ammonium Transporters from Pyrus betulaefolia Demonstrate Distinct Expression Characteristics

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Ammonium transporters (AMTs) play dominant roles in ammonium transport and distribution across cellular membranes. However, the AMT2-type AMTs from pear remain poorly understood. To characterize ammonium transport pathways in Pyrus betulaefolia Bunge, one popular rootstock for pear and two new genes with high homology to AMT2-type AMTs, PbAMT2 and PbAMT3, were isolated from its seedlings. The analysis of the PbAMT expression patterns in different organs of P. betulaefolia showed that expression of a given transporter could be very specific and their regulatory mechanisms were distinct. Both responded to various nitrogen regimes, PbAMT2 was detected in all organs, and the highest transcription was found in roots, whereas PbAMT3 was restricted to leaves. In addition, transcript level of PbAMT2 was strongly affected by the diurnal cycle, and PbAMT3 was exclusively expressed in leaves after treatment with two phytohormones: abscisic acid and methyl jasmonate. A complementation experiment using the yeast strain 31019b revealed that both PbAMT2 and PbAMT3 encoded functional, high-affinity AMTs. Furthermore, uptake studies indicated that these two AMTs possessed disparate affinities for ammonium and had opposite responses to external pH change. In summary, the present study provides basic genomic, transcript information and nitrogen transporter features for the pear AMT2 subfamily; indeed, PbAMT2 and PbAMT3 demonstrated distinct expression characteristics, which will pave the way for deciphering the high-affinity ammonium transport system in pear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

ABA:

Abscisic acid

AMT:

Ammonium transporter

EST:

Expressing sequence tags

MEGA:

Molecular Evolutionary Genetics Analysis

MeJ:

Methyl jasmonate

N:

Nitrogen

NCBI:

The National Center for Biotechnology Information

NH3 :

Ammonia

NH4 + :

Ammonium

OD600 :

Absorbance value at 600 nm

ORF:

Open reading frame

qPCR:

Quantitative real-time PCR

RACE:

Rapid amplification of cDNA ends

TM:

Transmembrane domains

References

  • Breuillin-Sessoms F, Floss DS, Gomez SK, Pumplin N, Ding Y, Levesque-Tremblay V, Noar RD, Daniels DA, Bravo A, Eaglesham JB, Benedito VA, Udvardi MK, Harrisona MJ (2015) Suppression of arbuscule degeneration in Medicago truncatula phosphate transporter4 mutants is dependent on the ammonium transporter 2 family protein AMT2;3. Plant Cell. doi:10.1105/tpc.114.131144

    PubMed  PubMed Central  Google Scholar 

  • Chang YH, Li H, Cong Y, Lin J, Sheng BL (2012) Characterization and expression of a phytochelatin synthase gene in birch-leaf pear (Pyrus betulaefolia Bunge). Plant Mol Biol Rep 30:1329–1337

    Article  CAS  Google Scholar 

  • Couturier J, Montanini B, Martin F, Brun A, Blaudez D, Chalot M (2007) The expanded family of ammonium transporters in the perennial poplar plant. New Phytol 174:137–150

    Article  CAS  PubMed  Google Scholar 

  • D'Apuzzo E, Rogato A, Simon-Rosin U, El Alaoui H, Barbulova A, Betti M, Dimou M, Katinakis P, Marquez A, Marini AM, Udvardi MK, Chiurazzi M (2004) Characterization of three functional high-affinity ammonium transporters in Lotus japonicus with differential transcriptional regulation spatial expression. Plant Physiol 134:1763–1774

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellerbeck M, Schüßler A, Brucker D, Dafinger C, Loos F, Brachmann A (2013) Characterization of three ammonium transporters of the glomeromycotan fungus Geosiphon pyriformis. Eukaryot Cell 12:1554–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaur VS, Singh US, Gupta AK, Kumar A (2012) Understanding the differential nitrogen sensing mechanism in rice genotypes through expression analysis of high and low affinity ammonium transporter genes. Mol Biol Rep 39:2233–2241

    Article  CAS  PubMed  Google Scholar 

  • Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von Wirén N (1999) Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graff L, Obrdlik P, Yuan LX, Loqué D, Frommer WB, von Wirén N (2011) N-terminal cysteines affect oligomer stability of the allosterically regulated ammonium transporter LeAMT1;1. J Exp Bot 62:1361–1373

    Article  CAS  PubMed  Google Scholar 

  • Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009) A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobae Y, Tamura Y, Takai S, Banba M, Hata S (2010) Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol 51:1411–1415

    Article  CAS  PubMed  Google Scholar 

  • Li BZ, Merrick M, Li SM, Li HY, Zhu SW, Shi WM, Su YH (2009) Molecular basis and regulation of ammonium transporter in rice. Rice Sci 4:314–322

    Article  Google Scholar 

  • Li SM, Li BZ, Shi WM (2012) Expression patterns of nine ammonium transporters in rice in response to N statu. Pedosphere 22(6):860–869

    Article  Google Scholar 

  • Li H, Cong Y, Lin J, Chang YH (2015) Molecular cloning and identification of an ammonium transporter gene from pear. Plant Cell Tissue Organ Cult 120:441–451

    Article  CAS  Google Scholar 

  • Loqué D, von Wirén N (2004) Regulatory levels for the transport of ammonium in plant roots. J Exp Bot 55:1293–1305

    Article  PubMed  Google Scholar 

  • Loqué D, Mora S, Andrade SLA, Pantoja O, Frommer WB (2009) Pore mutations in ammonium transporter AMT1 with increased electrogenic ammonium transport activity. J Biol Chem 284:24988–24995

    Article  PubMed  PubMed Central  Google Scholar 

  • Ludewig U (2006) Ion transport versus gas conduction: function of AMT/Rh-type proteins. Transfus Clin Biol 13:111–116

    Article  CAS  PubMed  Google Scholar 

  • Marini AM, SoussiBoudekou S, Vissers S, Andre B (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17:4282–4293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald TR, Dietrich FS, Lutzoni F (2012) Multiple horizontal gene transfers of ammonium transporters/ammonia permeases from prokaryotes to eukaryotes: toward a new functional and evolutionary classification. Mol Biol Evol 29:51–60

    Article  CAS  PubMed  Google Scholar 

  • Neuhäuser B, Ludewig U, Dynowski M (2009) Channel-like NH3 flux by ammonium transporter AtAMT2. Febs Lett 583:2833–2838

    Article  PubMed  Google Scholar 

  • Ninnemann O, Jauniaux JC, Frommer WB (1994) Identification of a high-Affinity NH4 + transporter from plants. Embo J 13:3464–3471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salvemini F, Marini AM, Riccio A, Patriarca EJ, Chiurazzi M (2001) Functional characterization of an ammonium transporter gene from Lotus japonicus. Gene 270:237–243

    Article  CAS  PubMed  Google Scholar 

  • Shelden MC, Dong B, de Bruxelles GL, Trevaskis B, Whelan J, Ryan PR, Howitt SM, Udvardi MK (2001) Arabidopsis ammonium transporters, AtAMT1;1 and AtAMT1;2, have different biochemical properties and functional roles. Plant Soil 231:151–160

    Article  CAS  Google Scholar 

  • Simon-Rosin U, Wood C, Udvardi MK (2003) Molecular and cellular characterisation of LjAMT2;1, an ammonium transporter from the model legume Lotus japonicus. Plant Mol Biol 51:99–108

    Article  CAS  PubMed  Google Scholar 

  • Sohlenkamp C, Shelden M, Howitt S, Udvardi M (2000) Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants. Febs Lett 467:273–278

    Article  CAS  PubMed  Google Scholar 

  • Sohlenkamp C, Wood C, Roeb GW, Udvardi MK (2002) Characterization of Arabidopsis AtAMT2, a high-affinity ammonium transporter of the plasma membrane. Plant Physiol 130:1788–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straub D, Ludewig U, Neuhäuser B (2014) A nitrogen-dependent switch in the high affinity ammonium transport in Medicago truncatula. Plant Mol Biol 86:485–494

    Article  CAS  PubMed  Google Scholar 

  • Suenaga A, Moriya K, Sonoda Y, Ikeda A, von Wirén N, Hayakawa T, Yamaguchi J, Yamaya T (2003) Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol 44:206–211

    Article  CAS  PubMed  Google Scholar 

  • van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge UI, Kunze R (2006) Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792

    Article  PubMed  PubMed Central  Google Scholar 

  • von Wittgenstein NJJB, Le CH, Hawkins BJ, Ehlting J (2014) Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants. BMC Evol Biol 14:11

    Article  Google Scholar 

  • Wang S, Orabi EA, Baday S, Berneche S, Lamoureux G (2012) Ammonium transporters achieve charge transfer by fragmenting their substrate. J Am Chem Soc 134:10419–10427

    Article  CAS  PubMed  Google Scholar 

  • Zidi-Yahiaoui N, Callebaut I, Genetet S, Kim C, Cartron J, Colin Y, Ripoche P, Mouro-Chanteloup I (2009) Functional analysis of human RhCG: comparison with E. coli ammonium transporter reveals similarities in the pore and differences in the vestibule. Am J Physiol Cell Physiol 297:C537–C547

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Sciences Foundation of China (No. 31372051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-hong Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Cong, Y., Chang, Yh. et al. Two AMT2-Type Ammonium Transporters from Pyrus betulaefolia Demonstrate Distinct Expression Characteristics. Plant Mol Biol Rep 34, 707–719 (2016). https://doi.org/10.1007/s11105-015-0957-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0957-8

Keywords