Molecular Characterization of Ethylene Response Sensor 1 (BoERS1) in Bambusa oldhamii

Abstract

An ethylene receptor gene named BoERS1 was cloned from a bamboo (Bambusa oldhamii) cDNA library. The open reading frame of BoERS1 was 1,899 bp and encoded a 632-amino acid protein, which contains the five conserved motifs (H, N, G1, F, and G2 boxes) of the bacterial two-component system histidine kinases and shows high sequence similarity with other ethylene receptors in plants, such as rice and maize. Expression of BoERS1 in bamboo shoots increased with the growth of the emerging shoots. In an in vitro kinase assay, the expressed histidine kinase domain of BoERS1 (BHK) was phosphorylated in the presence of Mn2+, and LC-ESI-MS/MS analysis showed that four amino acids, namely T442, S444, S489, and S503, were phosphorylated. It is interesting to note that S489 and S503 are located in a loop region (L1) that is found only in plant histidine kinase-containing enzymes. The identification of multiple phosphorylation sites on BoERS1 provides a new avenue for future structure–function studies of the ethylene receptor protein family.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abeles F, Morgan P, Saltveit M (1992) Ethylene in plant biology. Academic Press, San Diego

    Google Scholar 

  2. An F et al (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401. doi:10.1105/tpc.2110.076588

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Besant PG, Attwood PV (2009) Detection and analysis of protein histidine phosphorylation. Mol Cell Biochem 329:93–106. doi:10.1007/s11010-009-0117-2

    CAS  Article  PubMed  Google Scholar 

  4. Bilwes AM, Quezada CM, Croal LR, Crane BR, Simon MI (2001) Nucleotide binding by the histidine kinase CheA. Nat Struct Biol 8:353–360

    CAS  Article  PubMed  Google Scholar 

  5. Bisson MM, Groth G (2010) New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Mol Plant 3:882–889. doi:10.1093/mp/ssq036

    CAS  Article  PubMed  Google Scholar 

  6. Bisson MM, Groth G (2011) New paradigm in ethylene signaling: EIN2, the central regulator of the signaling pathway, interacts directly with the upstream receptors. Plant Signal Behav 6:164–166

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Bisson MM, Bleckmann A, Allekotte S, Groth G (2009) EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochem J 424:1–6. doi:10.1042/bj20091102

    CAS  Article  PubMed  Google Scholar 

  8. Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089. doi:10.1126/science.241.4869.1086

    CAS  Article  PubMed  Google Scholar 

  9. Bookout AL, Cummins CL, Mangelsdorf DJ, Pesola JM, Kramer MF (2006) High-throughput real-time quantitative reverse transcription PCR. Curr Protoc Mol Biol Chapter:Unit 15.18. doi:10.1002/0471142727.mb0471141508s0471142773

  10. Cao YR et al (2015) Tobacco ankyrin protein NEIP2 interacts with ethylene receptor NTHK1 and regulates plant growth and stress responses. Plant Cell Physiol 56:803–818. doi:10.1093/pcp/pcv1009

    Article  PubMed  Google Scholar 

  11. Chapman GP (1997) The bamboos: background to current research. The bamboos. Linnean Society, London

    Google Scholar 

  12. Chen HH, Charng YY, Yang SF, Shaw JF (1998) Isolation and characterization of a broccoli cDNA (Accession No. AF047477) encoding an ERS-type ethylene receptor. Plant Physiol 117:1125–1127

    Article  Google Scholar 

  13. Chiu WB, Lin CH, Chang CJ, Hsieh MH, Wang AY (2006) Molecular characterization and expression of four cDNAs encoding sucrose synthase from green bamboo Bambusa oldhamii. New Phytol 170:53–63

    CAS  Article  PubMed  Google Scholar 

  14. Cho E et al (2011) An expressed sequence tag analysis for the fast-growing shoots of Bambusa edulis Murno. J Plant Biol 54:402–408. doi:10.1007/s12374-011-9179-2

    Article  Google Scholar 

  15. Clark KL, Larsen PB, Wang X, Chang C (1998) Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci USA 95:5401–5406

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Gallivan JP, Dougherty DA (1999) Cation-pi interactions in structural biology. Proc Natl Acad Sci USA 96:9459–9464

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Gamble RL, Coonfield ML, Schaller GE (1998) Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci USA 95:7825–7829

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Gunawardena J (2005) Multisite protein phosphorylation makes a good threshold but can be a poor switch. Proc Natl Acad Sci USA 102:14617–14622

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Hyodo H, Yang SF (1971) Ethylene-enhanced synthesis of phenylalanine ammonia-lyase in pea seedlings. Plant Physiol 47:765–770

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Ju C et al (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA 109:19486–19491. doi:10.11073/pnas.1214848109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Kamiyoshihara Y, Tieman DM, Huber DJ, Klee HJ (2012) Ligand-induced alterations in the phosphorylation state of ethylene receptors in tomato fruit. Plant Physiol 160:488–497

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441

    CAS  Article  PubMed  Google Scholar 

  24. Liao SC, Lin CS, Wang AY, Sung HY (2013) Differential expression of genes encoding acid invertases in multiple shoots of bamboo in response to various phytohormones and environmental factors. J Agric Food Chem 61:4396–4405. doi:10.1021/jf400776m

    CAS  Article  PubMed  Google Scholar 

  25. Lin WC (1958) Studies on the growth of bamboo species in Taiwan. Bull Taiwan For Res Inst 54

  26. Lin CS, Kalpana K, Chang WC, Lin NS (2007) Improving multiple shoot proliferation in bamboo mosaic virus-free Bambusa oldhamii Munro propagation by liquid culture. Hortscience 42:1243–1246

    CAS  Google Scholar 

  27. Ma B et al (2013) Identification of rice ethylene-response mutants and characterization of MHZ7/OsEIN2 in distinct ethylene response and yield trait regulation. Mol Plant 6:1830–1848. doi:10.1093/mp/sst1087

    CAS  Article  PubMed  Google Scholar 

  28. Ma B et al (2014) Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings. PLoS Genet 10, e1004701. doi:10.1001371/journal.pgen.1004701, eCollection 1002014 Oct

    Article  PubMed  PubMed Central  Google Scholar 

  29. Marina A, Waldburger CD, Hendrickson WA (2005) Structure of the entire cytoplasmic portion of a sensor histidine-kinase protein. Embo J 24:4247–4259. doi:10.1038/sj.emboj.7600886

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Mayerhofer H, Panneerselvam S, Kaljunen H, Tuukkanen A, Mertens HD, Mueller-Dieckmann J (2014) Structural model of the cytosolic domain of the plant ethylene receptor 1 (ETR1). J Biol Chem 1:587667

    Google Scholar 

  31. Moussatche P, Klee HJ (2004) Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J Biol Chem 279:48734–48741. doi:10.1074/jbc.M403100200

    CAS  Article  PubMed  Google Scholar 

  32. Parkinson JS, Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71–112

    CAS  Article  PubMed  Google Scholar 

  33. Qiao H, Shen Z, Huang SS, Schmitz RJ, Urich MA, Briggs SP, Ecker JR (2012) Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338:390–393. doi:10.1126/science.1225974

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Qiu L, Xie F, Yu J, Wen CK (2012) Arabidopsis RTE1 is essential to ethylene receptor ETR1 amino-terminal signaling independent of CTR1. Plant Physiol 159:1263–1276. doi:10.1104/pp.112.193979

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Qu X, Schaller GE (2004) Requirement of the histidine kinase domain for signal transduction by the ethylene receptor ETR1. Plant Physiol 136:2961–2970

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Rothenberg M, Ecker JR (1993) Mutant analysis as an experimental approach towards understanding plant hormone action. Semin Dev Biol 4:3–13. doi:10.1006/sedb.1993.1002

    CAS  Article  Google Scholar 

  37. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Shi YH et al (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651–664

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst2197

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Tao JJ et al (2015) Tobacco TCTP interacts with ethylene receptor NTHK1 and enhances plant growth through promotion of cell proliferation. Plant Physiol. doi:10.1104/pp.15.00355

  42. Tomomori C et al (1999) Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. Nat Struct Biol 6:729–734

    CAS  Article  PubMed  Google Scholar 

  43. Voet-van-Vormizeele J, Groth G (2003) High-level expression of the Arabidopsis thaliana ethylene receptor protein ETR1 in Escherichia coli and purification of the recombinant protein. Protein ExprPurif 32:89–94

    CAS  Google Scholar 

  44. Voet-van-Vormizeele J, Groth G (2008) Ethylene controls autophosphorylation of the histidine kinase domain in ethylene receptor ETR1. Mol Plant 1:380–387. doi:10.1093/mp/ssn004

    CAS  Article  PubMed  Google Scholar 

  45. Wang W, Hall AE, O'Malley R, Bleecker AB (2003) Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci USA 100:352–357

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Wuriyanghan H et al (2009) The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant Cell. doi:10.1105/tpc.108.065391

    PubMed  PubMed Central  Google Scholar 

  47. Xie C, Zhang JS, Zhou HL, Li J, Zhang ZG, Wang DW, Chen SY (2003) Serine/threonine kinase activity in the putative histidine kinase-like ethylene receptor NTHK1 from tobacco. Plant J 33:385–393

    CAS  Article  PubMed  Google Scholar 

  48. Xie F, Liu Q, Wen CK (2006) Receptor signal output mediated by the ETR1 N terminus is primarily subfamily I receptor dependent. Plant Physiol 142:492–508

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Yang C et al (2015) MHZ6/OsEIL1 and OsEIL2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiol. doi:10.1104/pp.15.00353

  50. Yeh SH, Lin CS, Wu FH, Wang AY (2011) Analysis of the expression of BohLOL1, which encodes an LSD1-like zinc finger protein in Bambusa oldhamii. Planta 234:1179–1189. doi:10.1007/s00425-00011-01467-z

    CAS  Article  PubMed  Google Scholar 

  51. Yeh SH et al (2013) Identification of genes differentially expressed during the growth of Bambusa oldhamii. Plant Physiol Biochem 63:217–226. doi:10.1016/j.plaphy.2012.1011.1030

    CAS  Article  PubMed  Google Scholar 

  52. Zeng G (1998) Sticky-end PCR: new method for subcloning. Biotechniques 25:206–208

    CAS  PubMed  Google Scholar 

  53. Zhang J, Yu J, Wen CK (2014) An alternate route of ethylene receptor signaling. Front Plant Sci 5:648. doi:10.3389/fpls.2014.00648, eCollection 02014

    PubMed  PubMed Central  Google Scholar 

  54. Zhou H-L, Cao W-H, Cao Y-R, Liu J, Hao Y-J, Zhang J-S, Chen S-Y (2006) Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation. FEBS Lett 580:1239–1250

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Chiou-Hong Lin for providing a bamboo cDNA library, and Ms. Tsz-Yin Chang for the excellent technical assistance. We are grateful for the excellent core facility service provided by TechComm, National Taiwan University. LC-ESI-MS/MS data were acquired at the Academia Sinica Common Mass Spectrometry Facilities at the Institute of Biological Chemistry. Special thanks to Dr. Shu-Yu Lin for the help in analyzing MS data. This project was supported by a grant (101-2321-B-002-051) from the Ministry of Science and Technology, Taiwan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chien-Chih Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hsieh, YL., Lu, CF., Chiang, BY. et al. Molecular Characterization of Ethylene Response Sensor 1 (BoERS1) in Bambusa oldhamii . Plant Mol Biol Rep 34, 387–398 (2016). https://doi.org/10.1007/s11105-015-0929-z

Download citation

Keywords

  • Bambusa oldhamii
  • Ethylene receptor
  • Histidine kinase
  • Phosphorylation