Plant Molecular Biology Reporter

, Volume 34, Issue 2, pp 410–426 | Cite as

Characterization of Molecular and Physiological Responses Under Water Deficit of Genetically Modified Soybean Plants Overexpressing the AtAREB1 Transcription Factor

  • Juliane Prela Marinho
  • Norihito Kanamori
  • Leonardo Cesar Ferreira
  • Renata Fuganti-Pagliarini
  • Josirley de Fátima Corrêa Carvalho
  • Rafaela Alves Freitas
  • Silvana Regina Rockenbach Marin
  • Fabiana Aparecida Rodrigues
  • Liliane Márcia Mertz-Henning
  • José Renato Bouças Farias
  • Norman Neumaier
  • Maria Cristina Neves de Oliveira
  • Francismar Corrêa Marcelino-Guimarães
  • Takuya Yoshida
  • Yasunari Fujita
  • Kazuko Yamaguchi-Shinozaki
  • Kazuo Nakashima
  • Alexandre Lima Nepomuceno
Original Paper

Abstract

Drought is one of the major factors limiting crop productivity worldwide. Currently, the techniques of genetic engineering are powerful tools for the development of drought-tolerant plants, once they allow for the modification of expression patterns of genes responsive to drought. Within this context, transcription factors recognize specific DNA sequences in the regulatory region of target genes, and thereby regulate their expression. AREB is a transcription factor in the basic leucine zipper family, which binds to the ABRE element in the promoter region of genes induced by abscisic acid and drought. In this study, soybean plants transformed with the 35S:AtAREB1 construct were submitted to drought under greenhouse conditions. AtAREB1 expression was observed in the transgenic lines 1Ea2939 and 1Eb2889, but not in the event 1Ea15 and, under control of the CaMV 35S promoter, did not cause dwarfism and resulted in a higher survival rate of transformed plants after drought and rehydration. Moreover, 1Ea2939 and 1Eb2889 plants presented a greater total number of pods and seeds and increased dry matter content of seeds. The best performance of the transgenic lines 1Ea2939 and 1Eb2889 relative to BR 16 plants (wild type) and to event 1Ea15 might be related to mechanisms of drought prevention through reduced stomatal conductance and leaf transpiration under control conditions. Changes in the expression profile of phosphatases and kinases may also be involved. Such results suggest that the constitutive overexpression of the transcription factor AtAREB1 leads to an improved capacity of the soybean crop to cope with drought with no yield losses.

Keywords

Abscisic acid AREB1 transcription factor Glycine max L. Merrill Stomatal conductance Water scarcity Survival rate 

References

  1. Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327. doi:10.1007/s11032-004-8001-y CrossRefGoogle Scholar
  2. Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032. doi:10.5897/AJAR10.027 Google Scholar
  3. Barbosa EGG, Leite JP, Marin SRR, Marinho JP, Carvalho JFC, Fuganti-Pagliarini R, Farias JRB, Neumaier N, Marcelino-Guimarães F, Oliveira MCN, Yamaguchi-Shinozaki K, Nakashima K, Maruyama K, Kanamori N, Fujita Y, Yoshida T, Nepomeceno AL (2012) Overexpression of the ABA-dependent AREB1 transcription factor from Arabidopsis thaliana improves soybean tolerance to water deficit. Plant Mol Biol Report 31:719–730. doi:10.1007/s11105-012-0541-4 CrossRefGoogle Scholar
  4. Bastías A, López-Climent M, Valcárcel M, Rosello S, Gómez-Cadenas A, Casaretto JA (2011) Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor. Physiol Plant 141:215–226. doi:10.1111/j.1399-3054.2010.01435.x CrossRefPubMedGoogle Scholar
  5. Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid KAS, Sonnewald S, Sonnewald U, Kneitz S, Lachmann N, Mendel RR, Bittner F, Hetherington AM, Hedrich R (2013) The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol 23:53–57. doi:10.1016/j.cub.2012.11.022 CrossRefPubMedGoogle Scholar
  6. Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress-inducible expression of AtDREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082. doi:10.1007/s00299-007-0406-8 CrossRefPubMedGoogle Scholar
  7. Boneh U, Biton I, Schwartz A, Ben-Ari G (2012) Characterization of the ABA signal transduction pathway in Vitis vinífera. Plant Sci 187:89–96. doi:10.1016/j.plantsci.2012.01.015 CrossRefPubMedGoogle Scholar
  8. Bota J, Medrano H, Flexas J (2004) Is photosynthesis limited by decreased rubisco activity and RuBP content under progressive water stress? New Phytol 162:671–681. doi:10.1111/j.1469-8137.2004.01056.x CrossRefGoogle Scholar
  9. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763. doi:10.1046/j.1365-313X.2003.01661.x CrossRefPubMedGoogle Scholar
  10. Egli DB (2013) The relationship between the number of nodes and nods in soybean communities. Crop Sci 53:1668–1676. doi:10.2135/cropsci2012.11.0663 CrossRefGoogle Scholar
  11. Embrapa Soja.(1999). Cultivares de Soja 1999/2000. Londrina: 44p. (Embrapa Soja. Documentos, 128).Google Scholar
  12. Ennahli S, Earl HJ (2005) Physiological limitations to photosynthetic carbon assimilation in cotton under water stress. Crop Sci 45:2374–2382. doi:10.2135/cropsci2005.0147 CrossRefGoogle Scholar
  13. Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development description for soybeans, Glycine max (L.) Merril. Crop Sci 11:929–931. doi:10.2135/cropsci1971.0011183X001100060051x CrossRefGoogle Scholar
  14. Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitation revisited. Ann Bot 89:183–189. doi:10.1093/aob/mcf027 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279. doi:10.1055/s-2004-820867 CrossRefPubMedGoogle Scholar
  16. Fujita Y, Fujita M, Satoh R, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488. doi:10.1105/tpc.105.035659 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50:2123–2132. doi:10.1093/pcp/pcp147 CrossRefPubMedGoogle Scholar
  18. Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525. doi:10.1007/s10265-011-0412-3 CrossRefPubMedGoogle Scholar
  19. Gao SQ, Chen M, Xu ZS, Zhao CP, Li L, Xu HJ, Tang YM, Zhao X, Ma YZ (2011) The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol 75:537–553. doi:10.1007/s11103-011-9738-4 CrossRefPubMedGoogle Scholar
  20. Gómez-Porras JL, Riaño-Pachón DM, Dreyer I, Mayer JE, Mueller-Roeber B (2007) Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveal divergent patterns in Arabidopsis and rice. BMC Genomics 8:260. doi:10.1186/1471-2164-8-260 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Granier C, Tardieu F (1999) Leaf expansion and cell division are affected by reducing absorbed light before but not after the decline in cell division rate in the sunflower leaf. Plant Cell Environ 22:1365–1376. doi:10.1046/j.1365-3040.1999.00497.x CrossRefGoogle Scholar
  22. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052. doi:10.1111/j.1365-313X.2010.04124.x CrossRefPubMedGoogle Scholar
  23. Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Calif Agr Expt Sta Circ 347:32Google Scholar
  24. Hozain M, Abdelmageed H, Lee J, Kang M, Fokar M, Allen RD, Holaday AS (2012) Expression ofAtSAP5in cotton up-regulates putative stress-responsive genes and improves the tolerance to rapidly developing water deficit and moderate heat stress. J Plant Physiol 169:1261–1270. doi:10.1016/j.jplph.2012.04.007 CrossRefPubMedGoogle Scholar
  25. Hsieh TH, Lee JT, Chang YY, Chan MT (2002a) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626. doi:10.1104/pp. 006783 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hsieh TH, Lee JT, Yang PT, Chiu LH, Chang YY, Wang YC, Chan MT (2002b) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094. doi:10.1104/pp. 003442 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hufstetler EV, Boerma HR, Carter TE, Earl HJ (2007) Genotypic variation for three physiological traits affecting drought tolerance in soybean. Crop Sci 47:25–35. doi:10.2135/cropsci2006.04.0243 CrossRefGoogle Scholar
  28. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333. doi:10.1046/j.1365-313x.2001.01096.x CrossRefPubMedGoogle Scholar
  29. Kanamori N, Girotto L, Nepomuceno AL (2011) Agrobacterium-mediated Transformation of Brazilian Soybean Variety, BR 16. JIRCAS Work Rep 71:75–79Google Scholar
  30. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat Biotechnol 17:287–291. doi:10.1038/7036 CrossRefPubMedGoogle Scholar
  31. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350. doi:10.1093/pcp/pch037 CrossRefPubMedGoogle Scholar
  32. Kim JS, Mizoi J, Yoshida T, Fujita Y, Nakajima J, Ohori T, Todaka D, Nakashima K, Hirayama T, Shinozaki K, Yamaguchi-Shinozaki K (2011) An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physiol 52:2136–2146. doi:10.1093/pcp/pcr143 CrossRefPubMedGoogle Scholar
  33. Klingler JP, Batelli G, Zhu JK (2010) ABA receptors: the START of a new paradigm in phytohormone signaling. J Exp Bot 60:3199–3210. doi:10.1093/jxb/erq151 CrossRefGoogle Scholar
  34. Kobayashi F, Maeta E, Terashima A, Takumi S (2008) Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings. Physiol Plant 134:74–86. doi:10.1111/j.1399-3054.2008.01107.x CrossRefPubMedGoogle Scholar
  35. Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294. doi:10.1046/j.0016-8025.2001.00814.x CrossRefPubMedGoogle Scholar
  36. Lawlor DW (2013) Genetic Engineering to improve plant performance under drought: Physiological evaluation of achievements, limitations and possibilities. J Exp Bot 64:83–108. doi:10.1093/jxb/ers326 CrossRefPubMedGoogle Scholar
  37. Lee SJ, Kang JY, Park HJ, Kim MD, Bae MS, Choi HI, Kim SY (2010) DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiol 153:716–727. doi:10.1104/pp. 110.154617 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Leite JP, Barbosa EGG, Marin SRR, Marinho JP, Carvalho JFC, Fuganti-Pagliarini R, Cruz AS, Oliveira MCN, Farias JRB, Neumaier N, Guimarães FCM, Yoshida T, Kanamori N, Fujita Y, Nakashima K, Yamaguchi-Shinozaki K, Desidério JA, Nepomuceno AL (2014) Overexpression of the activated form of the AtAREB1 gene (AtAREB1 ΔQT) improves soybean responses to water deficit. Genet Mol Res 13:6272–6286. doi:10.4238/2014.August.15.10 CrossRefPubMedGoogle Scholar
  39. Li X-G, Chen S-B, Lu Z-X, Chang T-J, Zeng Q-C, Zu Z (2002) Impact of copy number on transgene expression in tobacco. Acta Bot Sin 44:120–123Google Scholar
  40. Marcolino-Gomes J, Rodrigues FA, Fuganti-Pagliarini R, Bendix C, Nakayama TJ, Celaya B, Molinari HBC, Oliveira MCN, Harmon FG, Nepomuceno AL (2014) Diurnal oscillations of soybean circadian clock and drought responsive genes. PLoS ONE 9(1):e86402. doi:10.1371/journal.phone.0086402 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara K, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K (2012) Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19:37–49. doi:10.1093/dnares/dsr040 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Melcher K, NG LM, Zhou E, Soon FF, Xu Y, Suino-Powell KM, Park SY, Weiner JJ, Fujii H, Chinnusamy V, Kovach A, Li J, Wang Y, Li J, Peterson FC, Jensen DR, Yong EL, Volkman BF, Cutler SR, Zhu JK, Xu HE (2009) A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors. Nature 462:602–608. doi:10.1038/nature08613 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Merrill SD, Tanaka DL, Hanson JD (2002) Root length growth of eight crop species in Haplustoll soils. Soil Sci Soc Am J 66:913–923. doi:10.2136/sssaj2002.9130 CrossRefGoogle Scholar
  44. Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249. doi:10.1111/j.1467-7652.2010.00547.x CrossRefPubMedGoogle Scholar
  45. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326. doi:10.1093/nar/8.19.4321 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723–735. doi:10.1007/s00425-002-0922-2 PubMedGoogle Scholar
  47. Orellana S, Yañez M, Espinoza A, Verdugo I, González E, Ruiz-Lara S, Casaretto JA (2010) The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ 33:2191–2208. doi:10.1111/j.1365-3040.2010.02220.x CrossRefPubMedGoogle Scholar
  48. Oya T, Nepomuceno AL, Neumaier N, Farias JRB, Tobita S, Ito O (2004) Drought tolerance characteristics of Brazilian soybean cultivars—evaluation and characterization of drought tolerant of various Brazilian soybean cultivars in the field. Plant Prot Sci 7:129–137. doi:10.1626/pps.7.129 CrossRefGoogle Scholar
  49. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071. doi:10.1126/science.1173041 PubMedPubMedCentralGoogle Scholar
  50. Paz MM, Martinez JC, Kalvig AB, Fonger TM, Wang K (2006) Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep 25:206–213. doi:10.1007/s00299-005-0048-7 CrossRefPubMedGoogle Scholar
  51. Pfaffl MW (2001) A new mathematical model for relative quantification in real time RT-PCR. Nucleic Acids Res 29:2002–2007. doi:10.1093/nar/29.9.e45 CrossRefGoogle Scholar
  52. Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401. doi:10.1016/j.tplants.2010.04.006 CrossRefPubMedGoogle Scholar
  53. Ray JD, Sinclair TR (1998) The effect of pot size on growth and transpiration of maize and soybean during water deficit stress. J Exp Bot 49:1381–1386. doi:10.1093/jxb/49.325.1381 CrossRefGoogle Scholar
  54. Reeves WM, Lynch TJ, Mobin R, Finkelstein RR (2011) Direct targets of the transcription factors ABA-insensitive (ABI) 4 and ABI5 reveal synergistic action by ABI4 and several bZIP ABA response factors. Plant Mol Biol 75:347–363. doi:10.1007/s11103-011-9733-9 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Salinet LH (2009) Avaliação fisiológica e agronômica de soja geneticamente modificada para maior tolerância à seca. Dissertation, Universidade de São PauloGoogle Scholar
  56. Shanker AK, Maheswari M, Yadav SK, Desai S, Bhanu D, Attal NB, Venkateswarlu B (2014) Drought stress responses in crops. Funct Integr Genomics 14:11–22. doi:10.1007/s10142-013-0356-x CrossRefPubMedGoogle Scholar
  57. Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351. doi:10.1093/jxb/erh276 CrossRefPubMedGoogle Scholar
  58. Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21:197–203. doi:10.1016/j.copbio.2010.03.002 CrossRefPubMedGoogle Scholar
  59. Skirycz A, Bodt SD, Obata T, Clercq ID, Claeys H, Rycke RD, Andriankaja M, Aken OV, Breusegem FV, Fernie AR, Inzé D (2010) Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress. Plant Physiol 152:226–244. doi:10.1104/pp. 109.148965 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Stolf-Moreira R, Lemos EGM, Abdelnoor RV, Beneventi MA, Rolla AAP, Pereira SS, Oliveira MCN, Nepomuceno AL, Marcelino-Guimarães FC (2011) Identification of reference genes for expression analysis by real-time quantitative PCR in drought-stressed soybean. Pesq Agrop Brasileira 46:58–65. doi:10.1590/S0100-204X2011000100008 CrossRefGoogle Scholar
  61. Svitashev SK, Pawlowski WP, Makarevitch I, Plank DW, Somers DA (2002) Complex transgene locus structures implicate multiple mechanisms for plant transgene rearrangement. Plant J 32:433–445. doi:10.1046/j.1365-313X.2002.01433.x CrossRefPubMedGoogle Scholar
  62. Tezara W, Mitchell V, Driscoll SP, Lawlor DW (2002) Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. J Exp Bot 53:1781–1791. doi:10.1093/jxb/erf021 CrossRefPubMedGoogle Scholar
  63. Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:1–26. doi:10.3389/fphys.2012.00347 CrossRefGoogle Scholar
  64. Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci U S A 106:17588–17593. doi:10.1073/pnas.0907095106 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: Sensing, signaling and transport. Plant Cell Physiol 51:1821–1839. doi:10.1093/pcp/pcq156 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Vadez V, Sinclair TR (2001) Leaf ureide degradation and N2 fixation tolerance to water deficit in soybean. J Exp Bot 52:153–159. doi:10.1093/jexbot/52.354.153 CrossRefPubMedGoogle Scholar
  67. Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez PL, Laurière C, Merlot S (2009) Protein phosphatases 2C regulate the activation of the Snf1 related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21:3170–3184. doi:10.1105/tpc.109.069179 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Voothuluru P, Sharp RE (2012) Apoplastic hydrogen peroxide in the growth zone of the maize primary root under water stress I. Increased levels are specific to the apical region of growth maintenance. J Exp Bot 64:1223–1233. doi:10.1093/jxb/ers277 CrossRefPubMedGoogle Scholar
  69. Vranová E, Langebartels C, Van Montagu M, Inze D, Van Camp W (2000) Oxidative stress, heat shock and drought differentially affect expression of a tobacco protein phosphatase 2C. J Exp Bot 51:1763–1764. doi:10.1093/jexbot/51.351.1763 CrossRefPubMedGoogle Scholar
  70. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803. doi:10.1146/annurev.arplant.57.032905.105444 CrossRefPubMedGoogle Scholar
  71. Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685. doi:10.1111/j.1365-313X.2009.04092.x CrossRefPubMedGoogle Scholar
  72. Zhang W, Ruan J, Ho TD, You Y, Yu T, Quatrano RS (2005) Cis regulatory element based targeted gene finding: genome wide identification of abscisic acid and abiotic stress-responsive genes in Arabidopsis thaliana. Bioinformatics 21:3074–3081. doi:10.1093/bioinformatics/bti490 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Juliane Prela Marinho
    • 1
    • 2
  • Norihito Kanamori
    • 3
  • Leonardo Cesar Ferreira
    • 2
  • Renata Fuganti-Pagliarini
    • 2
  • Josirley de Fátima Corrêa Carvalho
    • 2
  • Rafaela Alves Freitas
    • 2
    • 4
  • Silvana Regina Rockenbach Marin
    • 1
    • 2
  • Fabiana Aparecida Rodrigues
    • 2
  • Liliane Márcia Mertz-Henning
    • 2
  • José Renato Bouças Farias
    • 2
  • Norman Neumaier
    • 2
  • Maria Cristina Neves de Oliveira
    • 2
  • Francismar Corrêa Marcelino-Guimarães
    • 2
  • Takuya Yoshida
    • 5
  • Yasunari Fujita
    • 3
  • Kazuko Yamaguchi-Shinozaki
    • 5
  • Kazuo Nakashima
    • 3
  • Alexandre Lima Nepomuceno
    • 2
  1. 1.Londrina State University—Biological Sciences CenterLondrinaBrazil
  2. 2.Embrapa SoybeanLondrinaBrazil
  3. 3.Japan International Research Center for Agricultural SciencesTsukubaJapan
  4. 4.“Luiz Meneghel” CampusNorthern Paraná State UniversityBandeirantesBrazil
  5. 5.Laboratory of Plant Molecular PhysiologyTokyo UniversityTokyoJapan

Personalised recommendations