Skip to main content
Log in

Constitutive Expression of a Tomato Small Heat Shock Protein Gene LeHSP21 Improves Tolerance to High-Temperature Stress by Enhancing Antioxidation Capacity in Tobacco

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

It is well established that small heat shock proteins (sHSPs) play an important role in thermotolerance in various organisms due to their abundance and diversity. In the present study, a chloroplast small heat shock protein gene (LeHSP21) from tomato (Lycopersicon esculentum cv PKM-1) was constitutively expressed in tobacco (Nicotiana tabacum L. cv Wisconsin 38) plants via Agrobacterium-mediated transformation. When compared to wild-type control plants, transgenic tobacco plants constitutively expressing LeHSP21, driven by the cauliflower mosaic virus 35S promoter, exhibited improved tolerance to both high temperature and oxidative stress. Furthermore, when the seedlings were subjected to high temperature treatment, the activities of anti-oxidative enzymes and the content of proline were significantly higher in transgenic plants than those in the wild-type plants. Our results presented here demonstrate the feasibility of improving high temperature and oxidative stress tolerance in plants through the expression of LeHSP21 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad R, Kim MD, Back KH, Kim HS, Lee HS, Kwon SY, Murata N, Chung WI, Kwak SS (2008) Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Rep 27:687–698

    Article  CAS  PubMed  Google Scholar 

  • Almoguera C, Coca MA, Jordano J (1993) Tissue-specific expression of sunflower heat shock proteins in response to water stress. Plant J 4:947–958

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13:146–150

    Article  CAS  PubMed  Google Scholar 

  • Badawi GH, Kawano N, Yamauchi Y et al (2004) Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 121:231–238

    Article  CAS  PubMed  Google Scholar 

  • Banzet N, Richaud C, Deveaux Y, Kazmaier M, Gagnon J, Triantaphylides C (1998) Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant J 13:519–527

    Article  CAS  PubMed  Google Scholar 

  • Basha E, O’Neil H, Vierling E (2012) Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37:106–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RP (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–252

    Article  CAS  PubMed  Google Scholar 

  • Burke JJ, Chen J (2006) Changes in cellular and molecular processes in plant adaptation to heat stress. In: Huang B (ed) Plant-environment interactions, CRC press, pp. 27–46

  • Carranco R, Almoguera C, Jordano J (1997) A plant small heat shock protein gene expressed during zygotic embryogenesis but noninducible by heat stress. J Biol Chem 272:27470–27475

    Article  CAS  PubMed  Google Scholar 

  • Coca MA, Almoguera C, Jordano J (1994) Expression of sunflower low-molecular-weight heat-shock proteins during embryogenesis and persistence after germination: localization and possible functional implications. Plant Mol Biol 25:479–492

    Article  CAS  PubMed  Google Scholar 

  • Coca MA, Almoguera C, Thomas TL, Jordano J (1996) Differential regulation of small heat-shock genes in plants: analysis of a water-stress-inducible and developmentally activated sunflower promoter. Plant Mol Biol 31:863–876

    Article  CAS  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Report 1:19

    Article  CAS  Google Scholar 

  • DeRocher AE, Vierling E (1994) Developmental control of small heat shock protein expression during pea seed maturation. Plant J 5:93–102

    Article  CAS  Google Scholar 

  • Gifford DJ, Taleisnik E (1994) Heat-shock response of Pinus and Picea seedlings. Tree Physiol 14:103–110

    Article  PubMed  Google Scholar 

  • Gonzalez N, Beemster GT, Inzé D (2009) David and Goliath: what can the tiny weed Arabidopsis teach us to improve biomass production in crops? Curr Opin Plant Biol 12:157–164

    Article  CAS  PubMed  Google Scholar 

  • Grover A, Pareek A, Singla SL, Minhas D, Katiyar S, Ghawana S, Dubey H, Agarwal M, Rao GU, Rathee J, Grover A (1998) Engineering crops for tolerance against abiotic stresses through gene manipulation. Curr Sci 75:689–696

    Google Scholar 

  • Grover A, Sahi C, Sanan N, Grover A (1999) Taming abiotic stresses in plants through genetic engineering: current strategies and perspective. Plant Sci 143:101–111

    Article  CAS  Google Scholar 

  • Grover A, Kapoor A, Katiyar-Agarwal S, Agarwal M, Sahi C, Jain P, Satyalakshmi O, Agarwal S, Dubey H (2001a) Experimentation in biology of plant abiotic stress responses. Proc Indian Natl Acad Sci 67:189–214

    CAS  Google Scholar 

  • Grover A, Kapoor A, Satyalakshmi O, Agarwal S, Sahi C, Katiyar-Agarwal S, Agarwal M, Dubey H (2001b) Understanding molecular alphabets of the plant abiotic stress responses. Curr Sci 80:206–216

    CAS  Google Scholar 

  • Grover A, Aggarwal PK, Kapoor A, Katiyar-Agarwal S, Agarwal M, Chandramouli A (2003) Addressing abiotic stresses in agriculture through transgenic technology. Curr Sci 84:355–367

    Google Scholar 

  • Hamilton EW III, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physol 126:1266–1274

    Article  CAS  Google Scholar 

  • Haq NU, Ammar M, Bano A, Luthe DS, Heckathorn SA, Shakeel SN (2013) Molecular characterization of chenopodium album chloroplast small heat shock protein and its expression in response to different abiotic stresses. Plant Mol Biol Report 31:1230–1241

    Article  CAS  Google Scholar 

  • Härndahl U, Hall RB, Osteryoung KW, Vierling E, Bornman JF, Sundby C (1999) The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress Chaperones 4:129–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong ZL, Lakkineni K, Zhang ZM et al (2000) Removal of feedback inhibition of DELTA1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jofre A, Molinas M, Pla M (2003) A 10-kDa class-CI sHsp protects E. coli from oxidative and high-temperature stress. Planta 217:813–819

    Article  CAS  PubMed  Google Scholar 

  • Jong WW, Leunissen JAM, Voorter CEM (1993) Evolution of the α-crystallin/small heat-shock protein family. Mol Biol Evol 10:103–126

    PubMed  Google Scholar 

  • Kim DH, Xu ZY, Na YJ, Yoo YJ, Lee J, Sohn EJ, Hwang I (2011) Small heat shock protein Hsp17.8 functions as an AKR2A cofactor in the targeting of chloroplast outer membrane proteins in Arabidopsis. Plant Physiol 157:132–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KH, Alam I, Kim YG, Sharmin SA, Lee KW, Lee SH, Lee BH (2012) Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnol Lett 34:371–377

    Article  CAS  PubMed  Google Scholar 

  • Kishor PBK, Hong Z, Miao GH et al (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD (2007a) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Vierling E, Bäumlein H, von Koskull-Döring P (2007b) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19:182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer GF, Norman HA, Krizek DT, Mikrecki RM (1991) Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber. Phytochemistry 30:2101–2108

    Article  CAS  Google Scholar 

  • Krizek DT, Kramer GF, Krizek DT, Mirecki RM (1993) UV-B response of cucumber seedlings grown under metal halide and high pressure sodium /deluxe lamps. Physiol Plant 88:350–358

    Article  CAS  Google Scholar 

  • Landry LG, Chapple CC, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109:1159–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence SD, Cline K, Moore GA (1997) Chromoplast development in ripening tomato fruit-identification of cDNAs for chromoplast-targeted proteins and characterization of a cDNA encoding a plastid-localized low-molecular-weight heat shock protein. Plant Mol Biol 33:483–492

    Article  CAS  PubMed  Google Scholar 

  • Lee BH, Won SH, Lee HS et al (2000) Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene 245:283–290

    Article  CAS  PubMed  Google Scholar 

  • LeRudulier D, Strom AR, Dandekar AM et al (1989) Molecular biology of osmoregulation. Science 224:1064–1068

    Article  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lubaretz O, Zur Nieden U (2002) Accumulation of plant small heat-stress proteins in storage organs. Planta 215:220–228

    Article  CAS  PubMed  Google Scholar 

  • Mamedov TG, Shono M (2008) Molecular chaperone activity of tomato (Lycopersicon esculentum) endoplasmic reticulum-located small heat shock protein. J Plant Res 121:235–243

    Article  CAS  PubMed  Google Scholar 

  • Merino I, Contreras A, Jing ZP, Gallardo F, Canovas FM, Gomez L (2014) Plantation forestry under global warming: hybrid poplars with improved thermotolerance provide new insights on the in vivo function of small heat shock protein chaperones. Plant Physiol 164:978–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu C, Wang S, Zhang S, Pan J, Chen N, Li X, Wang Z, Liu H (2011) Small heat shock protein LimHSP16.45 protects pollen mother cells and tapetal cells against extreme temperatures during late zygotene to pachytene stages of meiotic prophase I in David Lily. Plant Cell Rep 30:1981–1989

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–495

    Article  CAS  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–713

    Article  CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y et al (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    Article  CAS  PubMed  Google Scholar 

  • Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey GK, Grant JJ, Cheong YH, Kim BG, Li LG, Luan S (2005) ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis. Plant Physiol 139:1185–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park H, Ko E, Ahn YJ (2014) Small heat shock proteins can confer tolerance to nanomaterial-induced toxicity. HortSci 49:1116–1121

    Google Scholar 

  • Park SM, Kim KP, Joe MK, Lee MO, Koo HJ, Hong CB (2015) Tobacco class I cytosolic small heat shock proteins are under transcriptional and translational regulation in expression and heterocomplex prevail under the high-temperature stress condition in vitro. Plant Cell Environ 38:767–776

    Article  CAS  PubMed  Google Scholar 

  • Pla M, Huguet G, Verdaguer D, Puigderrajols P, Llompart B, Nadal A, Molinas M (1998) Stress proteins co-expressed in suberized and lignified cells and in apical meristems. Plant Sci 139:49–57

    Article  CAS  Google Scholar 

  • Polla BS, Kantengwa S, Francois D, Salvioli S, Franceschi C, Marsac C, Cossarizza A (1996) Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc Natl Acad Sci U S A 93:6458–6463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin D, Wu H, Peng H, Yao Y, Ni Z, Li Z, Zhou C, Sun Q (2008) Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using wheat genome array. BMC Genomics 9:432

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakharov IY, Aridilla GB (1999) Variation of peroxidase activity in cacao beans during their ripening, fermentation and drying. Food Chem 65:51–54

    Article  CAS  Google Scholar 

  • Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557:265–268

    Article  CAS  PubMed  Google Scholar 

  • Sarkar NK, Kim YK, Grover A (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 10:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins). Cell Stress Chaperones 6:225–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddique M, Gernhard S, Von Koskull-D¨oring P, Vierling E, Scharf KD (2008) The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 13:183–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Grover A (2008) Genetic engineering for heat tolerance in plants. Physiol Mol Biol Plant 14:155–166

    Article  CAS  Google Scholar 

  • Soto A, Allona I, Collada C, Guevara MA, Casado R, Rodriguez-Cerezo E, Aragoncillo C, Gomez L (1999) Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol 120:521–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strid A (1993) Alteration in expression of defence genes in Pisum Sativum after exposure to supplementary ultraviolet-B radiation. Plant Cell Physiol 34:949–953

    CAS  Google Scholar 

  • Sun W, Bernard C, Cotte BV, Montagu MV, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1–9

    Article  CAS  PubMed  Google Scholar 

  • Swindell WR (2006) The association among gene expression responses to nine abiotic stress treatments in Arabidopsis thaliana. Genetics 174:1811–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Ukaji N, Kuwabara C, Takezawa D, Arakawa K, Fujikawa S (2001) Cold acclimation-induced WAP27 localized in endoplasmic reticulum in cortical parenchyma cells of mulberry tree was homologous to group 3 late embryogenesis abundant proteins. Plant Physiol 126:1588–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ukaji N, Kuwabara C, Kanno Y, Seo M, Takezawa D, Arakawa K, Fujikawa S (2010) Endoplasmic reticulum-localized small heat shock protein that accumulates in mulberry tree (Morus bombycis Koidz.) during seasonal cold acclimation is responsive to abscisic acid. Tree Physiol 30:502–513

    Article  CAS  PubMed  Google Scholar 

  • Verdaguer D, Aranda X, Jofré A, El Omari M, Molinas M, Fleck I (2003) Expression of low molecular weight heat-shock proteins and total antioxidant activity in the Mediterranean tree Quercus ilex L. in relation to seasonal and diurnal changes in physiological parameters. Plant Cell Environ 26:1407–1417

    Article  CAS  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  • Volkov RA, Panchuk II, Schöffl F (2005) Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco. Plant Mol Biol 57:487–502

    Article  CAS  PubMed  Google Scholar 

  • Vrekleij AJ, Leunissen JM (eds) (1989) Immuno-gold labeling in cell biology. CRC Press, Boca Raton

    Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang Z, Li H, Ke Q, Jeong JC, Lee HS, Xu B, Deng XP, Lim YP, Kwak SS (2014a) Transgenic alfalfa plants expressing AtNDPK2 exhibit increased growth and tolerance to abiotic stresses. Plant Physiol Biochem 84:67–77

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Fang Y, Bao Z, Jin X, Zhu W, Wang L, Liu T, Ji H, Wang H, Xu S, Sima Y (2014b) Identification of a Bombyx mori gene encoding small heat shock protein BmHsp27.4 expressed in response to high-temperature stress. Gene 538(1):56–62

    Article  CAS  PubMed  Google Scholar 

  • Wang HH, Jiang CM, Wang CT, Yang Y, Gao XY, Zhang HX (2015) Antisense expression of the fasciclin-like arabinogalactan protein PtFLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition in transgenic trees. J Exp Bot 66(5):1291–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64:391–403

    Article  CAS  PubMed  Google Scholar 

  • Waters ER, Aevermann BD, Sanders-Reed Z (2008) Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chaperones 13:127–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wehmeyer N, Hernandez LD, Finkelstein RR, Vierling E (1996) Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol 112:747–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weston DJ, Karve AA, Gunter LE, Jawdy SS, Yang X, Allen SM, Wullschleger SD (2011) Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max. Plant Cell Environ 34:1488.1506

    Article  PubMed  Google Scholar 

  • Xu Q, Zou Q, Zheng H, Zhang F, Tang B, Wang S (2011) Three heat shock proteins from Spodoptera exigua: gene cloning, characterization and comparative stress response during heat and cold shocks. Comp Biochem Physiol B Biochem Mol Biol 159:92–102

    Article  PubMed  Google Scholar 

  • Yancey P, Clark M, Hand S et al (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Tang RJ, Zhu JQ, Liu H, Mueller-Roeber B, Xia HJ, Zhang HX (2008) Enhancement of stress tolerance in transgenic tobacco plants constitutively expressing AtIpk2β, an inositol polyphosphate 6-/3-kinase from Arabidopsis thaliana. Plant Mol Biol 66:329–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimura K, Miyao K, Gaber A et al (2004) Enhancement of stress tolerance in transgenic tobacco plants overexpressing chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J 37:21–33

    Article  CAS  PubMed  Google Scholar 

  • Zarsky V, Garrido D, Eller N, Tupy J, Vicente O, Schoffl F, Heberle-Bors E (1995) The expression of a small heat shock gene is activated during induction of tobacco pollen embryogenesis by starvation. Plant Cell Environ 18:139–147

    Article  CAS  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhang Q, Gao Y, Pan H, Shi S, Wang Y (2014) Overexpression of heat shock protein gene PfHSP21.4 in Arabidopsis thaliana enhances heat tolerance. Acta Physiol Plant 36:1555–1564

    Article  CAS  Google Scholar 

  • Zhao CM, Shono M, Sun AQ, Yi SY, Li MH, Liu J (2007) Constitutive expression of an endoplasmic reticulum small heat shock protein alleviates endoplasmic reticulum stress in transgenic tomato. J Plant Physiol 164:835–841

    Article  CAS  PubMed  Google Scholar 

  • Zhong L, Zhou W, Wang H, Ding S, Lu Q, Wen X, Peng L, Zhang L, Lu C (2013) Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under hear stress. Plant Cell 25:2925–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been jointly supported by the following grants: the National Natural Science Foundation of China 31171169, 31100212, 31270314, 31371228, 31370670; the National Mega Project of GMO Crops 2013ZX08001003-007, 2013ZX08004002-006, 2014ZX0800942B; and the Strategic Priority Research Program of the Chinese Academy of Sciences XDA08030108; The comprehensive Survey of Lithium, Boron and Biological Resources in Salt Lake on the Tibetan Plateau [2015] 02-04-04-001; and Shanghai Key Laboratory of Bio-Energy Crops.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiayao Liu or Hongxia Zhang.

Additional information

Jiang Zhang and Haiyan Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Chen, H., Wang, H. et al. Constitutive Expression of a Tomato Small Heat Shock Protein Gene LeHSP21 Improves Tolerance to High-Temperature Stress by Enhancing Antioxidation Capacity in Tobacco. Plant Mol Biol Rep 34, 399–409 (2016). https://doi.org/10.1007/s11105-015-0925-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0925-3

Keywords

Navigation