Advertisement

Plant Molecular Biology Reporter

, Volume 34, Issue 1, pp 192–210 | Cite as

Phylogenetic Inferences and the Evolution of Plastid DNA in Campynemataceae and the Mycoheterotrophic Corsia dispar D.L Jones & B. Gray (Corsiaceae)

  • Sarah Silvia Bodin
  • Jung Sung Kim
  • Joo-Hwan Kim
Original Paper

Abstract

The phylogenetic positions of the families Campynemataceae and Corsiaceae within the order Liliales remains unclear. To date, molecular data from the plastid genome of Corsiaceae has been obtained exclusively from Arachnitis, for which alignment and phylogenetic inference has proved difficult. The extent of gene conservation among mycoheterotrophic species within Corsiaceae remains unknown. To clarify the phylogenetic position of Campynemataceae and Corsiaceae within Liliales, functional plastid-coding genes of species representing both families have been analyzed. Examination of two phylogenetic data sets of plastid genes employing parsimony, maximum-likelihood, and Bayesian inference methods strongly supported both families forming a basal clade to the remaining taxa of Liliales. The first data set consists of five functional plastid-encoded genes (matK, rps7, rps2, rps19, and rpl2) sequenced from Corsia dispar (Corsiaceae). The data set included 31 species representing all families within Liliales, as well as selected orders that are related closely to Liliales (10 outgroup species from Asparagales, Dioscoreales, and Pandanales). The second phylogenetic analysis was based on 75 plastid genes. This data set included 18 species from Liliales, representing major clades within the order, and 10 outgroup species from Asparagales, Dioscoreales, and Pandanales. In this latter data set, Campynemataceae was represented by 60 plastid-encoded genes sequenced from herbarium material of Campynema lineare. A large proportion of the plastid genome of C. dispar was also sequenced and compared to the plastid genomes of photosynthetic plants within Liliales and mycoheterotrophic plants within Asparagales to explore plastid genome reduction. The plastid genome of C. dispar is in the advanced stages of reduction, which signifies its high dependency on mycorrhizal fungi and is suggestive of a loss in photosynthetic ability. Functional plastid genes found in C. dispar may be applicable to other species in Corsiaceae, which will provide a basis for in-depth molecular analyses of interspecies relationships within the family, once molecular data from other members become available.

Keywords

Campynemataceae Corsiaceae Liliales Corsia Mycoheterotrophs Molecular phylogeny 

Notes

Acknowledgments

The authors thank Bruce Gray for the collection of Corsia dispar (voucher held at the Tropical Forest Institute, James Cook University), the Herbarium of the Museum National d’Histoire Naturelle (P), Paris, France (MNHN) for dried material of Campynemanthe species, Miguel de Salas of the Tasmanian Herbarium (HO) for Campynema lineare material, and the DNA Bank of Kew for DNA material. We would also like to thank Do Hoang Dang Khoa for help during the analysis process. The work was supported by the National Research Foundation of Korea (NRF) Grant Fund (MEST) (2010–0029131).

Supplementary material

11105_2015_914_MOESM1_ESM.doc (84 kb)
Supplementary Table I (DOC 84 kb)
11105_2015_914_MOESM2_ESM.doc (59 kb)
Supplementary Table II (DOC 59 kb)
11105_2015_914_MOESM3_ESM.doc (44 kb)
Supplementary Table III (DOC 43 kb)
11105_2015_914_MOESM4_ESM.doc (204 kb)
Supplementary Table IV (DOC 203 kb)

References

  1. APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121CrossRefGoogle Scholar
  2. Barrett C, Davis J (2012) The plastid genome of the mycoheterotrophic Corallorhiza striata (Orchidaceae) is in the relatively early stages of degradation. Am J Bot 99:1513–1523CrossRefPubMedGoogle Scholar
  3. Barrett C, Davis J, Leebans-Mack J, Conran J, Stevenson D (2013) Plastid genomes and deep relationships among the commelinid monocot angiosperms. Cladistics 29:65–87CrossRefGoogle Scholar
  4. Barrett C, Freudenstein J, Li J, Mayfield-Jones D, Perez L, Pires C, Santos C (2014) Investigation the path of plastid genome degradation in an early-transitional clade of heterotrophic angiosperms. Mol Biol Evol 31:3095–3112. doi: 10.1093/molbev/msu252
  5. Bidartondo MI (2005) The evolutionary ecology of mycoheterotrophy. New Phytol 167:335–352CrossRefPubMedGoogle Scholar
  6. Bodin S, Kim JS, Kim JH (2013) Complete chloroplast genome of Chionographis japonica (Willd.) Maxim. (Melanthiaceae): comparative genomics and evaluation of universal primers for Liliales. Plant Mol Biol Rep 31:1407–1421CrossRefGoogle Scholar
  7. Chang C, Lin H, Lin I, Chow T, Chen H, Chen W, Cheng C, Lin C, Liu S, Chang C, Chaw S (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23(2):279–291CrossRefPubMedGoogle Scholar
  8. Chase M, Soltis D, Olmstead R, Morgan D, Les D, Mishler B, Duvall M, Price R, Hills H et al (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid rbcL. Ann Mo Bot Gard 80:528–580CrossRefGoogle Scholar
  9. Chase M, Stevenson D, Wilkin P, Rudall P (1995) Monocots systematics: a combined analysis. In: Rudall P, Cribb P, Cutler D, Humphries C (eds) Monocotyledons: systematics and evolution. Kew, Royal Botanic Gardens, pp 685–730Google Scholar
  10. Chase M, Soltis D, Soltis P, Rudall P, Fay M, Hahn W, Sullivan S, Joseph J, Molvray M, Kores P, Givnish T, Sytsma K, Pires J (2000) Higher-level systematics of the monocotlyedons: an assessment of current knowledge and a new classification. In: Wilson K, Morrison D (eds) Monocots: systematics and evolution. CSIRO, Collingwood, pp 3–16Google Scholar
  11. Chase M, Fay M, Devey D, Maurin O, Rønsted N, Davies T et al (2006) Multigene analyses of monocot relationships: a summary. Aliso 22:63–75Google Scholar
  12. Colwell AE (1994) Genome evolution in a non-photosynthetic plant, Conopholis Americana. Ph.D. dissertation, Washington University, St. Louis, MOGoogle Scholar
  13. Cribb PJ (1985) The saprophytic genus Corsia in the Solmon Islands. Kew Mag 2:320–323Google Scholar
  14. Cribb PJ, Wilken P, Clements M (1995) Corsiaceae: a new family for the Falklands Islands. Kew Bull 50:171–172CrossRefGoogle Scholar
  15. Dahlgren R (1985) Campynemanthe (Campyneamtaceae): morphology, microsporogensis, early ovule ontogeny and relationships. Nord J Bot 5:321–330CrossRefGoogle Scholar
  16. Dahlgren R, Clifford H, Yeo P (1985) The families of the monocotyledons: structure, evolution and taxonomy. Springer-Verlag, BerlinCrossRefGoogle Scholar
  17. Davis J, Stevenson D, Petersen G, Seberg O, Campbell L, Freudenstein J, Goldman D, Hardy C, Michelangeli F, Simmons M, Specht C, Vergara-Silva F, Gandolfo M (2004) Phylogeny of the monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating jackknife and bootstrap values. Syst Bot 29:467–510CrossRefGoogle Scholar
  18. Davis J, McNeal J, Barrett C, Chase M, Cohen J, Duvall M, Givnish T, Graham S, Petersen G, Pires J, Seberg O, Stevenson D, Leebans-Mack J (2013) Contrasting patterns of support among plastid genes and genomes for major clades of the monocotyledons. In: Wilkin P, Mayo S (eds) Early events of monocot evolution. University Press, The Systematics Association, New York, pp 315–349CrossRefGoogle Scholar
  19. Delannoy E, Fujii S, Frans-Small C, Brundrett M, Small I (2011) Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Biol Evol 28:2077–2086PubMedCentralCrossRefPubMedGoogle Scholar
  20. Delavault PM, Russo NM, Lusson NA, Thatouarn PA (1996) Organization of the reduced plastid genome of Lathraea clandestina, an achlorophyllous parasitic plant. Physiol Plant 96:674–682CrossRefGoogle Scholar
  21. dePamphilis C, Palmer J (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348:337–339CrossRefPubMedGoogle Scholar
  22. Do HDK, Kim JS, Kim JH (2013) Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of Veratrum patulum O. Loes (Melanthiaceae). Gene 530:229–235CrossRefPubMedGoogle Scholar
  23. Do HDK, Kim JS, Kim JH (2014) A trnI_CAU triplication event in the complete chloroplast genome of Paris verticillata M.Bieb. (Melanthiaceae, Liliales). Genome Biol Evol 6(7):1699–1706PubMedCentralCrossRefPubMedGoogle Scholar
  24. Doyle J, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  25. Drummond A, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2009) Geneious Pro V6.1.6. Available at: http://www.geneious.com
  26. Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99(2):175–185CrossRefPubMedGoogle Scholar
  27. Fay M, Chase M, Rønsted N, Devey DS, Pillon Y, Pires JC et al (2006) Phylogenetics of Liliales: summarized evidence from combined analyses of five plastid and one mitochondrial loci. Aliso 22:559–565Google Scholar
  28. Felsenstein J (1973) Maximum likelihood and minimum steps methods for estimating evolutionary trees from data on discrete characters. Syst Zool 22:240–249CrossRefGoogle Scholar
  29. Felsentstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  30. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  31. Freudenstein JV, Barrett CF (2010) Mycoheterotrophy and diversity in Orchidaceae. In: Diversity, phylogeny and evolution in the monocotyledons, the proceedings of the Fourth International Conference on Monocot Systematics. Aarhus University Press, Copenhagen, pp 25–37Google Scholar
  32. Givnish T, Pires C, Graham S, McPherson M, Prince L, Patterson T, Rai H, Roalson E, Evans T, Hahn W, Millam K, Meerow A, Molvray M, Kores P, O’Brien H, Hall J, Kress J, Sytsma K (2005) Repeated evolution of net venation and fleshy fruits among monocots in shaded habitats confirms a priori predictions: evidence from an ndhF phylogeny. Proc Biol Sci 272(1571):1481–1490PubMedCentralCrossRefPubMedGoogle Scholar
  33. Givnish T, Ames M, McNeal J, McKain M, Steele P, de Pamphilis C, Leebens-Mack J (2010) Assembling the tree of the monocotyledons: plastome sequence phylogeny and evolution of Poales. Ann Mo Bot Gard 97(4):584–616CrossRefGoogle Scholar
  34. Goldblatt P (1986) Systematics and relationships of the bigeneric Pacific family Campynemataceae(Liliales). Bull Mus Natl Hist Nat, Paris, Ser 4 section B. Adansonia 8:117–132Google Scholar
  35. Goremykin V, Hirsch-Ernst K, Wolfl S, Hellwig F (2003) Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborealla is not a basal angiosperm. Mol Biol Evol 20:1499–1505CrossRefPubMedGoogle Scholar
  36. Goremykin V, Holland B, Hirsch-Ernst K, Hellwig F (2005) Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Mol Biol Evol 22(9):1813–1822CrossRefPubMedGoogle Scholar
  37. Hall T (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  38. Hansen AK, Escobar LK, Gilbert LE, Jansen RK (2007) Paternal, maternal, and biparental inheritance of the chloroplast genome in Passiflora (Passifloraceae): implications for phylogenetic studies Am J Bot 94:42–46Google Scholar
  39. Howe C, Barbrook A, Koumandou V, Nisbet R, Symington HA, Wightman TF (2003) Evolution of the chloroplast genome. Philos Trans R Soc Lond B 358:99–107CrossRefGoogle Scholar
  40. Ibisch P (1996) On the biology, biogeography, and taxonomy of Arachnitis Phil. Nom. Cons. (Corsiaceae) in respect to a new record in Bolivia. Willdenowia 26:321–332CrossRefGoogle Scholar
  41. Jansen R, Cai Z, Raubeson L, Daniell H, dePamphilis C, Leebens-Mack J et al (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci U S A 104(49):19369–19374PubMedCentralCrossRefPubMedGoogle Scholar
  42. Janssen T, Bremer K (2004) The age of major monocot groups inferred from 800 + rbcL sequences. Bot J Linn Soc 146:385–398CrossRefGoogle Scholar
  43. Jones D, Gray B (2008) Corsia dispar: a new combination for Corsiaceae. Austrobaileya 7:717–722Google Scholar
  44. Jonker F (1938) A monograph of the Burmanniaceae. Meded Bot Mus Herb Rijks Univ Utrecht 51:1–279Google Scholar
  45. Kim JS, Kim JH (2013) Comparative genome analysis and phylogenetic relationship of order Liliales: insights from the complete plastid genome sequences of two lilies (Lilium longiflorum and Alstroemeria aurea). PLoS One 8(6), e68180PubMedCentralCrossRefPubMedGoogle Scholar
  46. Kim JS, Hong J, Chase M, Fay M, Kim JH (2013) Familial relationships of the monocot order Liliales based on a molecular phylogenetic analysis using four plastid loci: matK, rbcL, atpB and atpF-H. Bot J Linn Soc 172:5–21CrossRefGoogle Scholar
  47. Leake J (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216CrossRefGoogle Scholar
  48. Leake J (2005) Plants parasitic on fungi: unearthing the fungi in myco-heterotrophs and debunking the ‘saprophytic’ plant myth. Mycologist 19:113–122Google Scholar
  49. Leake J, Cameron D (2010) Physiological ecology of mycoheterotrophy. New Phytol 185(3):601–605CrossRefPubMedGoogle Scholar
  50. Leebens-Mack J, Raubeson LA, Cui L, Kuehl JV, Fourcade MH, Chumley TW, Boore JL, Jansen RK, depamphilis CW (2005) Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone. Mol Biol Evol 22(10):1948–1963Google Scholar
  51. Lemaire B, Huysmans S, Smets E, Merckx V (2011) Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms. J Plant Res 124:561–576PubMedCentralCrossRefPubMedGoogle Scholar
  52. Li X, Zhang TC, Qiao Q, Ren Z, Zhao J, Yonezawa T, Hasegawa M, Crabbe MJC, Li J, Zhong Y (2013) Complete chloroplast genome sequence of holoparasite Cistanche deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from its host Haloxylon ammodendron (Chenopodiaceae). PLoS One 8(3), e58747. doi: 10.1371/journal.pone.0058747 PubMedCentralCrossRefPubMedGoogle Scholar
  53. Liu J, Qi Z, Zhao Y, Fu C, Xiang Q (2012) Complete cpDNA genome sequence of Smilax china and phylogenetic placement of Liliales—influences of gene partitions and taxon sampling. Mol Phylogenet Evol 64:545–562CrossRefPubMedGoogle Scholar
  54. Logacheva M, Schelkunov M, Penin A (2011) Sequencing and analysis of plastid genome in mycoheterotrophic orchid Neottia nidus-avis. Genome Biol Evol 3:1296–1303PubMedCentralCrossRefPubMedGoogle Scholar
  55. Logacheva M, Schelkunov M, Nuraliev M, Samigullin T, Penin A (2014) The plastid genome of the mycoheterotrophic monocot Petrosavia stellaris exhibits both gene losses and multiple rearrangements. Genome Biol Evol 6:238–246PubMedCentralCrossRefPubMedGoogle Scholar
  56. Merckx V (2013) Mycoheterotrophy: an introduction. In: Merckx V (ed) Mycoheterotrophy: the biology of plants living on fungi. Springer, Leiden University, The NetherlandsCrossRefGoogle Scholar
  57. Merckx V, Schols P, Maas-Van de Kamer H, Maas P, Huysmans S, Smets E (2006) Phylogeny and evolution of Burmanniaceae (Dioscoreales) based on nuclear and mitochondrial data. Am J Bot 93(11):1684–1698CrossRefPubMedGoogle Scholar
  58. Merckx V, Bakker F, Huysmans S, Smets E (2009)Bias and conflict in phylogenetic inference of myco-heterotrophic plants: a case study inThismiaceae.Cladistics25:64–77Google Scholar
  59. Merckx V, Mennes C, Peay K, Geml J (2013) Evolution and diversification. In: Merckx V (ed) Mycoheterotrophy: the biology of plants living on fungi. Springer, Leiden University, The NetherlandsCrossRefGoogle Scholar
  60. Moore M, Bell C, Soltis P, Soltis D (2007) Using plastid data genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 104:19363–19368PubMedCentralCrossRefPubMedGoogle Scholar
  61. Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE (2010) Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci USA 107:4623–4628Google Scholar
  62. Neyland R, Hennigan M (2003) A phylogenetic analysis of large-subunit (26S) ribosome DNA sequences suggests that the Corsiaceae are polyphyletic. N Z J Bot 41:1–11CrossRefGoogle Scholar
  63. Nickrent DL, Ouyang Y, Duff RJ, dePamphilis CW (1997a) Do nonasterid holoparasitic flowering plants have plastid genomes? Plant Mol Biol 34:717–729CrossRefPubMedGoogle Scholar
  64. Nickrent DL, Duff RJ, Konings DAM (1997b) Structural analyses of plastid-encoded 16S rRNAs in holoparasitic angiosperms. Plant Mol Biol 34:731–743CrossRefPubMedGoogle Scholar
  65. Pan I, Liao D, Wu F, Daniell H et al (2012) Complete chloroplast genome sequence of an orchid model plant candidate: Erycina pusilla apply in tropical Oncidium breeding. PLoS One 7(4), e34738PubMedCentralCrossRefPubMedGoogle Scholar
  66. Petersen G, Seberg O, Davis J, Goldman D, Stevenson D, Campbell L, Michelangeli F, Specht C, Chase M, Fay M, Pires J, Freudenstein J, Hardy C, Simmons M (2006) Mitochondrial data in monocot phylogenetics. Aliso 22:52–62Google Scholar
  67. Petersen G, Seberg O, Davis J (2012) Phylogeny of the Liliales (Monocotyledons) with special emphasis on data partition congruence and RNA editing. Cladistics 29:274–295. doi: 10.1111/j.1096-0031.2012.00427.x
  68. Porter P (1987) Notes on the floral biology, cytology, and embryology of Campynemanthe (Liliales: Campynemataceae). Ann Mo Bot Gard 74:574–576Google Scholar
  69. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefPubMedGoogle Scholar
  70. Raubeson L, Peery R, Chumley T, Dziubek C, Fourcade HM, Boore J, Jansen R (2007) Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genomics 8(1):174. doi: 10.1186/1471-2164-8-174 PubMedCentralCrossRefPubMedGoogle Scholar
  71. Ronquist F, Huelsenbeck J (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:572–1574CrossRefGoogle Scholar
  72. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana, Totowa, pp 365–386Google Scholar
  73. Rübsamen T (1986) Morphologische, Embryologische und Systematische Untersuchungen an Burmanniaceae und Corsiaceae mit Ausblick auf die Orchidaceae-Apostasioideae. Dissertationes Botanicae, Band 92. J. Cramer, BerlinGoogle Scholar
  74. Rudall P, Eastman A (2002) The questionable affinities of Corsia (Corsiaceae): evidence from floral anatomy and pollen morphology. Bot J Linn Soc 138(3):315–324CrossRefGoogle Scholar
  75. Rudall P, Stobart K, Hong W, Conran J, Funess C, Kite G, Chase M (2000) Consider the lilies: systematics of Liliales. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 347–357Google Scholar
  76. Shi C, Liu Y, Huang H, Xia E-H, Zhang H-B et al (2013) Contradiction between Plastid Gene Transcription and Function Due to Complex Posttranscriptional Splicing: An Exemplary Study of ycf15 Function and Evolution in Angiosperms. PLoS ONE 8(3), e59620. doi: 10.1371/journal.pone.0059620 PubMedCentralCrossRefPubMedGoogle Scholar
  77. Soltis DE, Albert VA, Savolainen V et al (2004) Genome-scale data, angiosperm relationships, and “ending incongruence”: a cautionary tale in phylogenetics. Trends Plant Sci 9:477–483Google Scholar
  78. Soltis D, Gitzendanner M, Stull G, Chester M, Chanderbali A, Chamala S, Jordan-Thaden I, Soltis P, Schnable P, Barbazuk WB (2013) The potential of genomics in plant systematics. Taxon 62(5):886–898CrossRefGoogle Scholar
  79. Staats M, Erkens R, Van de Vossenberg B, Wieringa J, Kraaijeveld K, Stielow B, Geml J, Richardson J, Bakker F (2013) Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens. PLoS One 8(7), e69189PubMedCentralCrossRefPubMedGoogle Scholar
  80. Staehelin L, Newcomb E (2000) Membrane structure and membranous organelles. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Biology, Madison, pp 2–50Google Scholar
  81. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi: 10.1093/bioinformatics/btu033
  82. Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (*and other methods), ver 4. Sinauer, SunderlandGoogle Scholar
  83. Thalouarn P, Theodet C, Russo N, Delavault P (1994) The reduced plastid genome of a non-photosynthetic angiosperm Orobanche hederae has retained the rbcL gene. Plant Physiol Biochem 32:233–242Google Scholar
  84. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680PubMedCentralCrossRefPubMedGoogle Scholar
  85. Van Royen P (1972) Sertulum papuanum 17. Corsiaceae of New Guinea and surrounding areas. Webbia 27:223–255CrossRefGoogle Scholar
  86. Vinnersten A, Bremer K (2001) Age and biogeography of major clades in Liliales. Am J Bot 88(9):1695–1703CrossRefPubMedGoogle Scholar
  87. Wickett N, Zhang Y, Hansen S, Roper J, Kuehl J, Plock S, Wolf P, dePamphilis C, Boore J, Goffinet B (2008) Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis. Mol Biol Evol 25(2):393–401CrossRefPubMedGoogle Scholar
  88. Wickett N, Honaas L, Wafula E, Das M, Huang K, Wu B, Landherr L, Timko M, Yoder J, Westwood J, dePamphilis C (2011) Transcriptomes of the parasitic plant family Orobanchaceae reveal surprising conservation of chlorophyll synthesis. Curr Biol 21(24):2098–2104CrossRefPubMedGoogle Scholar
  89. Wolfe K, Morden C, Palmer J (1992) Function and evolution of a minimal plastid genome from a non-photosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652PubMedCentralCrossRefPubMedGoogle Scholar
  90. Wu F, Chan M, Liao D, Hsu C, Lee Y, Daniell H, Duvall M et al (2010) Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biol 10:68. doi: 10.1186/1471-2229-10-68 PubMedCentralCrossRefPubMedGoogle Scholar
  91. Yang J, Tang M, Li H, Zhang Z, Li D (2013) Complete chloroplast genome of the genus Cymbidium: lights into the species identification, phylogenetic implications and population genetic analyses. BMC Evol Biol 13:84. doi: 10.1186/1471-2148-13-84 PubMedCentralCrossRefPubMedGoogle Scholar
  92. Zhang D, Saunders R (1999) Corsiopsis chinensis gen. et sp. nov. (Corsiaceae): first record of the family in Asia. Syst Bot 24(3):311–314CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sarah Silvia Bodin
    • 1
  • Jung Sung Kim
    • 1
  • Joo-Hwan Kim
    • 1
  1. 1.Department of Life ScienceGachon UniversitySeongnamKorea

Personalised recommendations