Skip to main content

Expression of An Antisense Brassica oleracea GIGANTEA (BoGI) Gene in Transgenic Broccoli Causes Delayed Flowering, Leaf Senescence, and Post-Harvest Yellowing Retardation

Abstract

Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop all over the world. However, rapid post-harvest senescence in harvested floral heads reduces its value. Mutation in GIGANTEA (GI) caused delay of flowering and increased tolerance level to H2O2-induced oxidative stress in Arabidopsis. BoGI, a GI orthologue, was isolated and characterized from B. oleracea. BoGI mRNA is expressed throughout development and can be detected in leaves, stem, root, and flowers. Further analysis indicated that the expression of BoGI is modulated by the circadian clock. To investigate the senescence flowering-associated mechanism regulated by BoGI gene and the agricultural application of BoGI in controlling flowering time and floret yellowing for B. oleracea, constructs containing antisense cDNA of BoGI driven by 35S or a flower-specific AP1 promoter were transformed into B. oleracea and the transgenic plants were generated. The flowering time and the senescence of the detached leaves were significantly delayed in transgenic 35S::BoGI antisense plants. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis showed that clear reduction of BoGI expression was observed in these 35S::BoGI antisense plants compared to that in wild-type plants. Furthermore, post-harvest yellow and flower senescence was delayed in AP1::BoGI antisense plants. These findings indicate that BoGI could be involved in regulation of flowering time, leaf, floret, and flower senescence in broccoli.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aida R, Yoshida T, Ichimura K, Goto R, Shibata M (1998) Extension of flower longevity in transgenic torenia plants incorporating ACC oxidase transgene. Plant Sci 138:91–101

    CAS  Article  Google Scholar 

  2. Amasino RM (1996) Control of flowering time in plants. Curr Opin Genet Dev 6:480–487

    CAS  Article  PubMed  Google Scholar 

  3. Araki T (2001) Transition from vegetative to reproductive phase. Curr Opin Plant Biol 4:63–68

    CAS  Article  PubMed  Google Scholar 

  4. Araki T, Komeda Y (1993) Analysis of the role of the late flowering locus, GI, in the flowering of Arabidopsis thaliana. Plant J 3:231–239

    Article  Google Scholar 

  5. Ayub R, Guis M, Amor MB, Gillot L, Roustan JP, Latche A, Bouzayen M, Pech JC (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotechnol 14:862–866

    CAS  Article  PubMed  Google Scholar 

  6. Barth C, Tullio MD, Conklin PL (2006) The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot 57:1657–1665

    CAS  Article  PubMed  Google Scholar 

  7. Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    CAS  Article  PubMed  Google Scholar 

  8. Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199

    Article  Google Scholar 

  9. Cao SQ, Ye M, Jiang ST (2005) Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep 24:683–690

    CAS  Article  PubMed  Google Scholar 

  10. Cao SQ, Jiang ST, Zhang RX (2006) The role of GIGANTEA gene in mediating the oxidative stress response and in Arabidopsis. Plant Growth Regul 48:261–270

    CAS  Article  Google Scholar 

  11. Cao SQ, Song YQ, Su L (2007) Freezing sensitivity in the gigantean mutant of Arabidopsis is associated with sugar deficiency. Biol Plant 51:359–362

    CAS  Article  Google Scholar 

  12. Cao J, Shelton AM, Earle ED (2008) Sequential transformation to pyramid two Bt genes in vegetable Indian mustard (Brassica juncea L.) and its potential for control of diamondback moth larvae. Plant Cell Rep 27:479–487

    CAS  Article  PubMed  Google Scholar 

  13. Chen LFO, Hwang JY, Charng YY, Sun CW, Yang SF (2001) Transformation of broccoli (Brassica oleracea var. italica) with isopentenyltransferase gene via Agrobacterium tumefaciens for postharvest yellowing retardation. Mol Breed 7:243–257

    CAS  Article  Google Scholar 

  14. Chen LFO, Huang JY, Wang YH, Chen YT, Shaw JF (2004) Ethylene insensitivity and postharvest yellowing retardation in mutant ethylene response sensor (boers) gene transformed broccoli (Brassica oleracea var. italica.). Mol Breed 14:199–213

    Article  Google Scholar 

  15. Chen LFO, Lin CH, Kelkar SM, Chang YM, Shaw JF (2008) Transgenic broccoli (Brassica oleracea var. italica) with antisense chlorophyllase (BoCLH1) delays postharvest yellowing. Plant Sci 174:25–31

    CAS  Article  Google Scholar 

  16. Chou ML, Yang CH (1998) FLD interacts with genes that affect different developmental phase transitions to regulate Arabidopsis shoot development. Plant J 15:231–242

    CAS  Article  PubMed  Google Scholar 

  17. Christou P (1996) Transformation technology. Trends Biotechnol 1:423–431

    Google Scholar 

  18. Clarke SF, Jameson PE, Downs C (1994) The influence of 6-benzyl-aminopurine on post-harvest senescence of floral tissues of broccoli Brassica oleracea var. italica. Plant Growth Regul 14:21–27

    CAS  Article  Google Scholar 

  19. Corcuff R, Arul J, Hamza F, Castaigne F, Makhlouf J (1996) Storage of broccoli florets in ethanol vapor enriched atmosphere. Postharvest Biol Technol 7:219–229

    Article  Google Scholar 

  20. Coupe SA, Sinclair BK, Watson LM, Heyes JA, Eason JR (2003) Identification of dehydration-responsive cysteine proteases during post-harvest senescence of broccoli florets. J Exp Bot 54:1045–1056

    CAS  Article  PubMed  Google Scholar 

  21. Curtis IS, Nam HG, Yun JY, Seo KH (2002) Expression of an antisense GIGANTEA (GI) gene fragment in transgenic radish causes delayed bolting and flowering. Transgenic Res 11:249–256

    CAS  Article  PubMed  Google Scholar 

  22. De Block M, De Brouwer D, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression bar and new genes in transgenic plants. Plant Physiol 91:694–701

    PubMed Central  Article  PubMed  Google Scholar 

  23. Eason JR, Ryan DJ, Watson LM, Hedderley D, Christey MC, Braun RH, Coupe SA (2005) Suppression of the cysteine protease, aleurain, delays floret senescence in Brassica oleracea. Plant Mol Biol 57:645–657

    CAS  Article  PubMed  Google Scholar 

  24. Edwards KD, Lynn JR, Gyula P, Nagy F, Millar AJ (2005) Natural allelic variation in the temperature compensation mechanisms of the Arabidopsis thaliana circadian clock. Genetics 170:387–400

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  25. Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci U S A 94:10367–10372

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  26. Fahey JW, Haristoy X, Dolan PM, Kensler TW, Scholtus I, Stephenson KK, Talalay P, Lozniewski A (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyreneinduced stomach tumors. Proc Natl Acad Sci U S A 99:7610–7615

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  27. Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  28. Gamborg O, Miller R, Ojima K (1968) Nutrients requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    CAS  Article  PubMed  Google Scholar 

  29. Gan S, Amasino RM (1997) Making sense of senescence. Molecular genetic regulation and manipulation of leaf senescence. Plant Physiol 113:313–319

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Gapper NE, Coupe CA, McKenzie MJ, Sinclair BK, Lill RE, Jameson PE (2005a) Regulation of harvest-induced senescence in broccoli (Brassica oleracea var. italica) by cytokinin, ethylene, and sucrose. J Plant Growth Regul 24:153–165

    CAS  Article  Google Scholar 

  31. Gapper NE, Coupe SA, McKenzie MJ, Scott RW, Christey MC, Lill RE, McManus MT, Jameson PE (2005b) Senescence-associated down-regulation of 1-aminocyclopropane-1-carboxylate (ACC) oxidase delays harvest-induced senescence in broccoli. Funct Plant Biol 32:891–901

    CAS  Article  Google Scholar 

  32. Gillies SL, Toivonen PMA (1995) Cooling method influences the postharvest quality of broccoli. HortSci 30:313–315

    Google Scholar 

  33. Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:170–180

    Article  Google Scholar 

  34. Gould PD, Locke JCW, Larue C, Southern MM, Davis SJ, Hanano S, Moyle R, Milich R, Putterill J, Millar AJ, Hall A (2006) The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 18:1177–1187

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  35. Gray J, Picton S, Shabbeer J, Schuch W, Frierson D (1992) Molecular biology of fruit ripening and its manipulation with antisense genes. Plant Mol Biol 19:69–87

    CAS  Article  PubMed  Google Scholar 

  36. Henzi MX, Christey MC, McNeil DL, Davies KM (1999) Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica) with an antisense 1-aminocyclopropane-1-carboxylic acid oxidase gene. Plant Sci 143:55–62

    CAS  Article  Google Scholar 

  37. Higgins JD, Newbury HJ, Barbara DJ, Muthumeenakshi S, Puddephat IJ (2006) The production of marker-free genetically engineered broccoli with sense and antisense ACC synthase 1 and ACC oxidase 1 and 2 to extend shelf-life. Mol Breed 17:7–20

    CAS  Article  Google Scholar 

  38. Huq E, Tepperman JM, Quail PH (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci U S A 97:9789–9794

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  39. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    CAS  Article  PubMed  Google Scholar 

  40. Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449:356–360

    CAS  Article  PubMed  Google Scholar 

  41. Kim WY, Ali Z, Park HJ, Park SJ, Cha JY, Perez-Hormaeche J, Quintero FJ, Shin G, Kim MR, Qiang Z, Ning L, Park HC, Lee SY, Bressan RA, Pardo JM, Bohnert HJ, Yun DJ (2013) Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun 4:1352–1364

    Article  PubMed  Google Scholar 

  42. Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66

    CAS  Article  PubMed  Google Scholar 

  43. Kurepa J, Smalle J, Van Montagu M, Inze D (1998) Effects of sucrose supply on growth and paraquat tolerance of the late-flowering gi- 3 mutant. Plant Growth Regul 26:91–96

    CAS  Article  Google Scholar 

  44. Leshem YY (1988) Plant senescence processes and free radicals. Free Rad Biol Med 5:39–49

    CAS  Article  PubMed  Google Scholar 

  45. Levy YY, Dean C (1998) The transition to flowering. Plant Cell 10:1973–1990

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  46. Lim PO, Woo HR, Nam HG (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci 8:272–278

    CAS  Article  PubMed  Google Scholar 

  47. McHughen A, Jordan M, Feist G (1989) A preculture period prior to Agrobacterium inoculation increase production of transgenic plants. J Plant Physiol 135:245–248

    Article  Google Scholar 

  48. Metz TD, Dixit R, Earle ED (1995) Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata). Plant Cell Rep 15:287–292

    CAS  PubMed  Google Scholar 

  49. Mittag M, Kiaulehn S, Johnson CH (2005) The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to? Plant Physiol 137:399–409

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  50. Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17:2255–2270

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  51. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Article  Google Scholar 

  52. Noodén LD, Leopold AC (1978) Phytohormones and the endogenous regulation of senescence and abscission. In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related compounds: A comprehensive treatise, vol II. Elsevier, Amsterdam, pp 329–369

    Google Scholar 

  53. Oeller PA, Ming-Wong L, Taylor L, Pike DA, Theologis A (1991) Reversible inhibition of fruit senescence by antisense RNA. Science 254:437–439

    CAS  Article  PubMed  Google Scholar 

  54. Page T, Griffiths G, Buchanan-Wollaston V (2001) Molecular and biochemical characterization of postharvest senescence in broccoli. Plant Physiol 125:718–727

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  55. Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285:1579–1582

    CAS  Article  PubMed  Google Scholar 

  56. Paul S, Sikdar SR (1999) Expression of npt II marker and gus reporter genes and their inheritance in subsequent generations of transgenic Brassica developed through Agrobacterium mediated gene transfer. Curr Sci 76:1569–1573

    CAS  Google Scholar 

  57. Pogson BJ, Downs CG, Davies KM (1995) Differential expression of two 1-aminocyclopropane-1-carboxylic acid oxidase genes in broccoli after harvest. Plant Physiol 108:651–657

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  58. Potrykus I (1991) Gene transfer to plants: assessment of published approaches and results. Annu Rev Plant Physiol Plant Mol Biol 432:205–225

    Article  Google Scholar 

  59. Pramanik BK, Matsui T, Suzuki H, Kosugi Y (2005) A sucrose synthase gene from broccoli: cDNA cloning sequencing and its expression during storage. Biotechnology 4:288–295

    CAS  Article  Google Scholar 

  60. Rédei GP (1962) Supervital mutants of Arabidopsis. Genetics 47:443–460

    PubMed Central  PubMed  Google Scholar 

  61. Reeves PH, Coupland G (2000) Response of plant development to environment: control of flowering by daylength and temperature. Curr Opin Plant Biol 3:37–42

    CAS  Article  PubMed  Google Scholar 

  62. Rushing JW (1990) Cytokinins affect respiration, ethylene production, and chlorophyll retention of packaged broccoli florets. HortSci 25:88–90

    CAS  Google Scholar 

  63. Sangwan RS, Bourgeois Y, Brown S, Vasseur G, Sangwan-Norreel B (1992) Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana. Planta 188:439–456

    CAS  Article  PubMed  Google Scholar 

  64. Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  65. Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:285–289

    CAS  Article  PubMed  Google Scholar 

  66. Smith CJS, Watson CF, Ray J, Bird CR, Morris PC, Schuch W, Grierson D (1988) Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334:724–726

    CAS  Article  Google Scholar 

  67. Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    Article  PubMed  Google Scholar 

  68. Tian MS, Davies L, Downs CG, Liu XF, Lill RE (1995) Effects of floret maturity, cytokinin and ethylene on broccoli yellowing after harvest. Postharvest Biol Tech 6:29–40

    CAS  Article  Google Scholar 

  69. van Doorn WG, Woltering EJ (2004) Senescence and programmed cell death: substance or semantics? J Exp Bot 55:2147–2153

    Article  PubMed  Google Scholar 

  70. Villemont E, Dubois F, Sangwan RS, Vasseur G, Bourgeois Y, Sangwan-Norreel B (1997) Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer. Planta 201:160–172

    CAS  Article  Google Scholar 

  71. Walden R, Wingender R (1995) Gene-transfer and plantregeneration techniques. Trends Biotechnol 13:324–331

    CAS  Article  Google Scholar 

  72. Wang CY (1977) Effect of aminoethoxy analog of rhizobitoxine and sodium benzoate on senescence of broccoli. HortSci 12:54–56

    CAS  Google Scholar 

  73. Wu K, Zhang L, Zhou C, Yu CW, Chaikam V (2008) HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59:225–234

    CAS  Article  PubMed  Google Scholar 

  74. Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–312

    CAS  Article  PubMed  Google Scholar 

  75. Zimmermann P, Zentgraf U (2005) The correlation between oxidative stress and leaf senescence during plant development. Cell Mol Biol Lett 10:515–553

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to C-H Y from the Ministry of Science and Technology, Taiwan, ROC, grant numbers: NSC95-2317-B-005-006 and NSC96-2317-B-005-019. This work was also supported in part by the Ministry of Education, Taiwan, ROC, under the ATU plan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chang-Hsien Yang.

Additional information

Muthu Thiruvengadam and Ching-Fang Shih contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thiruvengadam, M., Shih, CF. & Yang, CH. Expression of An Antisense Brassica oleracea GIGANTEA (BoGI) Gene in Transgenic Broccoli Causes Delayed Flowering, Leaf Senescence, and Post-Harvest Yellowing Retardation. Plant Mol Biol Rep 33, 1499–1509 (2015). https://doi.org/10.1007/s11105-015-0852-3

Download citation

Keywords

  • Agrobacterium-mediated transformation
  • Antisense GIGANTEA gene
  • Brassica oleracea L. var. italica
  • Delayed flowering
  • Post-harvest senescence