Skip to main content
Log in

Transcriptome Profile in Response to Frost Tolerance in Eucalyptus globulus

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The genetic improvement of trees for freezing tolerance is one of the most important goals to extend the plantations to colder areas. RNA-Seq technology has become a key tool in transcriptome studies. It can quantify overall expression levels for each gene simultaneously with high efficiency and speed through in silico gene expression, where differentially expressed genes can be identified by measuring the reads mapped for each transcript. In this study, the results of ESTs libraries from two Eucalyptus globulus genotypes showing contrasting differences in frost tolerance after cold acclimation using mRNA-Seq and in silico gene expression are discussed. A total of 14,265 non-redundant transcripts were predicted, where 163 corresponded to upregulated and 537 to downregulated genes. Pathway analyses of upregulated transcripts indicated that differences in frost tolerance might be regulated by the tree response to chemical and osmotic stimulus and organic substances, principally by overexpressing proteins that respond to hormone stress. These results suggest that genes coding for dehydrins, outer envelope, and voltage-dependent anion channel proteins are likely to participate in the regulation of the cold acclimation process and may have an important role in frost tolerance. The transcription factor analysis allowed identifying that those most differentially expressed in a resistant genotype were participating in the regulation of transcription, hormone regulation, photosynthesis, and response to stress. Additionally, the screening of polymorphic EST-SSR in silico and the validation of these markers in a reference population lead to identify a polymorphic EST-SSR with potential use for plant breeding and genotype discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al Bitar F, Roosens N, Smeyers M, Vauterin M, Van Boxtel J, Jacobs M, Homble F (2003) Sequence analysis, transcriptional and posttranscriptional regulation of the rice VDAC family. Biochim Biophys Acta 1625:43–51

    Article  CAS  PubMed  Google Scholar 

  • Aljamal JA, Genchi G, De Pinto V, Stefanizzi L, De Santis A, Benz R, Palmieri F (1993) Purification and characterization of Porin from corn (Zea mays L.) mitochondria. Plant Physiol 102:615–621

    PubMed Central  CAS  PubMed  Google Scholar 

  • Asghar R, Fenton RD, DeMason DA, Close TJ (1994) Nuclear and cytoplasmic localization of maize embryo and aleurone dehydrin. Protoplasma 177:87–94

    Article  CAS  Google Scholar 

  • Baldi P, Grossi M, Pecchioni N, Vale G, Cattivelli L (1999) High expression level of a gene coding for a chloroplastic amino acid selective channel protein is correlated to cold acclimation in cereals. Plant Mol Biol 41:233–243

    Article  CAS  PubMed  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bozovic V, Svensson J, Schmitt J, Kohn C (2013) Dehydrins (LTI29, LTI30, and COR47) from Arabidopsis thaliana expressed in Escherichia coli protect thylakoid membranes during freezing. J Serbian Chem Soc 78(8):1149–1160

    Article  CAS  Google Scholar 

  • Buschiazzo E, Gemmell NJ (2006) The rise, fall, and renaissance of microsatellites in eukaryotic genomes. Bioessays 28:1040–1050

    Article  CAS  PubMed  Google Scholar 

  • Castagnone-Sereno P, Danchin EGJ, Deleury E, Guillemaud T, Malausa T, Abad P (2010) Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic species Meloidogyne incognita. BMC Genomics 11:598

    Article  PubMed Central  PubMed  Google Scholar 

  • Charron J, Ouellet F, Houde M, Sarhan F (2008) The plant Apolipoprotein D ortholog protects Arabidopsis against oxidative stress. BMC Plant Biol 8:86

    Article  PubMed Central  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2006) Gene regulation during cold acclimation in plants. Physiol Plant 126:52–61

    Article  CAS  Google Scholar 

  • Chinusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 10:444–451

    Article  Google Scholar 

  • Costa e Silva F, Shvaleva A, Broetto F, Ortunño MF, Rodrigues ML, Almeida MH, Chaves MM, Pereira JS (2008) Acclimation to short-term low temperatures in two Eucalyptus globulus clones with contrasting drought resistance. Tree Physiol 29:77–86

    Article  PubMed  Google Scholar 

  • Degenkolbe T, Giavalisco P, Zuther E, Seiwert B, Hincha DK, Willmitzer L (2012) Differential remodeling of the lipidome during cold acclimation in natural accessions of Arabidopsis thaliana. Plant J 72:972–982

    CAS  PubMed  Google Scholar 

  • Desai MK, Mishra RN, Verma D, Nair S, Sopory SK, Reddy MK (2006) Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet (Pennisetum glaucum). Plant Physiol Biochem 44:483–493

    Article  CAS  PubMed  Google Scholar 

  • Elkeles A, Devos KM, Graur D, Zizi M, Breiman A (1995) Multiple cDNAs of wheat voltage-dependent anion channels (VDAC): isolation, differential expression, mapping and evolution. Plant Mol Biol 29:109–124

    Article  CAS  PubMed  Google Scholar 

  • Fernández M, Villarroel C, Balbontín C, Valenzuela S (2010) Validation of reference genes for real-time qRT-PCR normalization during cold acclimation in Eucalyptus globulus. Trees 24:1109–1116

    Article  Google Scholar 

  • Fernández M, Valenzuela S, Arora R, Chen K (2012a) Isolation and characterization of three cold acclimation-responsive dehydrin genes from Eucalyptus globulus. Tree Genet Genomes 8:149–162

    Article  Google Scholar 

  • Fernández M, Valenzuela S, Barraza H, Latorre J, Neira V (2012b) Photoperiod, temperature and water deficit differentially regulate the expression of four dehydrin genes from Eucalyptus globulus. Trees 26:1483–1493

    Article  Google Scholar 

  • Frenette-Charron JB, Breton G, Badawi M, Sarhan F (2002) Molecular and structural analyses of a novel temperature stress-induced lipocalin from wheat and Arabidopsis. FEBS Lett 517(1–3):129–132

    Article  CAS  PubMed  Google Scholar 

  • Gasic K, Hernandez A, Korban SS (2004) RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Report 22:437a–437

    Article  Google Scholar 

  • Geiger TR, Keith CS, Muszynski MG, Newton KJ (1999) Sequences of three maize cDNAs encoding mitochondrial voltage-dependent anion channel (VDAC) proteins (accession nos. AF178950, AF178951, and AF178952) (PGR 99–156). Plant Physiol 121:686

    Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsren U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186. doi:10.1093/nar/gkr944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo A, He K, Liu D, Bai S, Gu X, Wei L, Luo JDATF (2005) A database of Arabidopsis transcription factors. Bioinformatics 14:2568–2569

    Article  Google Scholar 

  • Hara M, Shinoda Y, Kubo M, Kashima D, Takahashi I, Kato T, Horiike T, Kuboi T (2011) Biochemical characterization of the Arabidopsis KS-type dehydrin protein, whose gene expression is constitutively abundant rather than stress dependent. Acta Physiol Plant 33:2103–2116

    Article  CAS  Google Scholar 

  • Hara M, Kondo M, Kato T (2013) A KS-type dehydrin and its related domains reduce Cu-promoted radical generation and the histidine residues contribute to the radical-reducing activities. J Exp Bot 64:615–1624

    Article  Google Scholar 

  • Heins L, Mentzel H, Schmid A, Benz R, Schmitz UK (1994) Biochemical, molecular, and functional characterization of porin isoforms from potato mitochondria. J Biol Chem 269:26402–26410

    CAS  PubMed  Google Scholar 

  • Hincha DK, Höfner R, Schwab KB, Heber U, Schmitt JM (1987) Membrane rupture is the common cause of damage to chloroplast membranes in leaves injured by freezing or excessive wilting. Plant Physiol 83:251–253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50:967–981

    Article  CAS  PubMed  Google Scholar 

  • Kawamura Y, Uemura M (2003) Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J 36:141–154

    Article  CAS  PubMed  Google Scholar 

  • Keirle MR, Avis PG, Feldheim KA, Hemmes DE, Mueller GM (2011) Investigating the allelic evolution of an imperfect microsatellite locus in the Hawaiian mushroom Rhodocollybia laulaha. J Hered 102(6):727–734

    Article  CAS  PubMed  Google Scholar 

  • Keller G, Bang Cao P, San Clemente H, Kayal WE, Marque C, Teulières C (2013) Transcript profiling combined with functional annotation of 2,662 ESTs provides a molecular picture of Eucalyptus gunnii cold acclimation. Trees 27:1713–1735

    Article  Google Scholar 

  • Kjellsen TD, Shiryaeva L, Schröder WP, Strimbecka GR (2010) Proteomics of extreme freezing tolerance in Siberian spruce (Picea obovata). J Proteomics 73:965–975

    Article  CAS  PubMed  Google Scholar 

  • Krause GH, Grafflage S, Rumich-Bayer S, Somersalo S (1988) Effects of freezing on plant mesophyll cells. Symp Soc Exp Biol 42:311–327

    CAS  PubMed  Google Scholar 

  • Krüger C, Berkowitz O, Stephan UW, Hell R (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem 277:25062–25069

    Article  PubMed  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Chen S, Li A, Zhai C, Jing R (2014) Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. Plos One 9(1):e84359. doi:10.1371/journal.pone.0084359

    Article  PubMed Central  PubMed  Google Scholar 

  • Matute DR, Sepulveda EV, Quesada LM, Goldman GH, Taylor JW, Restrepo A, McEwen JG (2006) Microsatellite analysis of three phylogenetic species of Paracoccidioides brasiliensis. J Clin Microbiol 44:2153–2157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Mundry M, Bornberg-Bauer E, Sammeth M, Feulner PGD (2012) Evaluating characteristics of de novo assembly software on 454 transcriptome data: a simulation approach. PLoS ONE 7:e31410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:97–103

    Article  CAS  PubMed  Google Scholar 

  • Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109:800–805

    Article  CAS  PubMed  Google Scholar 

  • Ozhuner E, Eldem V, Ipek A, Okay S, Sakcali S, Zhang B, Boke H, Unver T (2013) Boron stress responsive microRNAs and their targets in barley. Plos One 8:e59543. doi:10.1371/journal.pone.0059543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rasmussen-Poblete S, Valdes J, Gamboa MC, Valenzuela PDT, Krauskopf E (2008) Generation and analysis of an Eucalyptus globulus cDNA library constructed from seedlings subjected to low temperature conditions. E J Biotechnol 11(2):14

    Google Scholar 

  • Riano-Pachon DM, Ruzicic S, Dreyer I, Mueller-Roeber B (2007) PlnTFDB an integrative plant transcription factor database. BMC Bioinformatics

  • Rohde P, Hincha DK, Heyer AG (2004) Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia-0 and C24) that show differences in non-acclimated and acclimated freezing tolerance. Plant J 38:790–799

    Article  CAS  PubMed  Google Scholar 

  • Rorat T (2006) Plant dehydrins-tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  CAS  PubMed  Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35:543–584

    Article  CAS  Google Scholar 

  • Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6:e21800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swindell WR, Huebner M, Weber AP (2007) Plastic and adaptive gene expression patterns associated with temperature stress in Arabidopsis thaliana. Heredity 99:143–150

    Article  CAS  PubMed  Google Scholar 

  • Talia P, Nishinakamasu V, Hopp HE, Heinz RA, Paniego N (2010) Genetic mapping of EST-SSR, SSR and InDel to improve saturation of genomic regions in a previously developed sunflower map. Electron J Biotechnol 13:1–14

    Article  Google Scholar 

  • Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21:2213–2223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor J, Durkin J, Breden F (1999) The death of a microsatellite: a phylogenetic perspective on microsatellite interruptions. Mol Biol Evol 16(4):567–572

    Article  CAS  PubMed  Google Scholar 

  • Teulières C, Marque C (2007) Eucalyptus. Biotechnol Agric For 60(Section II):387–406

    Google Scholar 

  • Theocharis A, Clement C, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091–1105

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50(1999):571–599

    Article  CAS  PubMed  Google Scholar 

  • Thurston MI, Field D (2005) Msatfinder: detection and characterisation of microsatellites. Distributed by the authors at http://www.genomics.ceh.ac.uk/msatfinder/. CEH Oxford, Mansfield Road, Oxford OX1 3SR

  • Tominaga Y, Nakagawara C, Kawamura Y, Uemura M (2006) Effect of plasma membrane-associated proteins on acquisition of freezing tolerance in Arabidopsis thaliana. In: Chen THH, Uemura M, Fujikawa S (eds) Cold hardiness in plants: molecular genetics, cell biology and physiology. CABI Publishing, Oxfordshire, pp 235–249

    Google Scholar 

  • Uemura M, Tominaga Y, Nakagawara C, Shigematsu S, Minami A, Kawamura Y (2006) Responses of the plasma membrane to low temperatures. Physiol Plant 126:81–89

    Article  CAS  Google Scholar 

  • Varshney RK, Sigmund R, Borner A, Korzun V, Stein N, Sorrells ME, Langrige P, Graner A (2005) Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci 168:195–202

    Article  CAS  Google Scholar 

  • Wandrey M, Trevaskis B, Brewin N, Udvardi MK (2004) Molecular and cell biology of a family of voltage-dependent anion channel porins in Lotus japonicas. Plant Physiol 134:1–12

    Article  Google Scholar 

  • Wang XC, Zhao QY, Ma CL, Zhang ZH, Cao HL, Kong YM, Yue C, Hao XY, Chen L, Ma JQ, Jin JQ, Li Yang YJ (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14(1):415

    Article  PubMed Central  PubMed  Google Scholar 

  • Wei H, Dhanaraj AL, Rowland LJ, Fu Y, Krebs SL, Arora R (2005) Comparative analysis of expressed sequence tags from cold acclimated and non-acclimated leaves of Rhododendron catawbiense Michx. Planta 221:406–416

    Article  CAS  PubMed  Google Scholar 

  • Weigel D (2012) Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiol 158:2–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu J, Zhang YX, Wei W, Han L, Guan ZQ, Wang Z, Chai TY (2008) BjDHNs confer heavy-metal tolerance in plants. Mol Biotechnol 38:91–98

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E (2011) AGRIS: the Arabidopsis Gene Regulatory Information Server, an update. Nucleic Acids Res 39:D1118–D1122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yun Z, Jin S, Ding YD, Wang Z, Gao HJ, Pan ZY, Xu J, Cheng YJ, Deng XX (2012) Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage. J Exp Bot 63:2873–2893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhen Y, Ungerer MC (2008) Clinal variation in freezing tolerance among natural accessions of Arabidopsis thaliana. New Phytol 177:419–427

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was financed by Genómica Forestal S.A. and funded by grants from CORFO (05-CTE-04-03).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Fernández.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

(DOCX 16 kb)

Supplementary Table S2

(DOCX 15 kb)

Supplementary Table S3

(DOCX 17 kb)

Supplementary Table S4

(DOCX 18 kb)

Supplementary Fig. S1

(DOCX 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, M., Troncoso, V. & Valenzuela, S. Transcriptome Profile in Response to Frost Tolerance in Eucalyptus globulus . Plant Mol Biol Rep 33, 1472–1485 (2015). https://doi.org/10.1007/s11105-014-0845-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0845-7

Keywords

Navigation