Skip to main content
Log in

Consensus Genetic Map Construction for Field Pea (Pisum sativum L.), Trait Dissection of Biotic and Abiotic Stress Tolerance and Development of a Diagnostic Marker for the er1 Powdery Mildew Resistance Gene

Plant Molecular Biology Reporter Aims and scope Submit manuscript

Cite this article

Abstract

Field pea (Pisum sativum L.) is a cool-season legume that is cultivated worldwide for both human consumption and stockfeed. Genetic improvement is essential for enhanced crop production and management of field pea, especially to deliver superior varieties adapted to various biotic and abiotic stresses. A detailed understanding of the genetic basis of such stress tolerances is hence desirable. Genetic linkage maps based on single nucleotide polymorphisms (SNP) and simple sequence repeat (SSR) markers have been developed from two recombinant inbred line (RIL) populations generated by crossing phenotypically divergent parental genotypes. The Kaspa × Yarrum map contained 428 loci across 1910 cM, while the Kaspa × ps1771 map contained 451 loci across 1545 cM. Data from these maps were combined through bridging markers with those from previously published studies to generate a consensus structure including 2028 loci distributed across seven linkage groups (LGs), with a cumulative length of 2387 cM at an average density of one marker per 1.2 cM. Trait dissection of powdery mildew resistance was performed for both RIL populations, identifying a single genomic region of large magnitude in the same genomic region on Ps VI, which were inferred to correspond to the er1 gene. Equivalent studies of the Kaspa × ps1771 RIL population identified a major quantitative trait locus (QTL) for boron tolerance that coincided with the disease resistance-controlling locus, permitting strategies of co-selection for these desirable traits. Resequencing of the PsMLO1 candidate gene from resistant and susceptible genotypes allowed design and validation of a putative diagnostic marker for powdery mildew resistance. The availability of a highly saturated consensus map, linked markers for key biotic and abiotic stress tolerances and a diagnostic marker for the agronomically important er1 gene provide important resources for field pea molecular breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Attanayake RN, Glawe DA, McPhee KE, Dugan FM, Chen W (2010) Erysiphe trifolii—a newly recognized powdery mildew pathogen of pea. Plant Pathol 59:712–720

    Article  CAS  Google Scholar 

  • Aubert G, Morin J, Jacquin F, Loridon K, Quillet MC, Petit A, Rameau C, Lejeune-Hénaut I, Huguet T, Burstin J (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112:1024–1041

    Article  CAS  PubMed  Google Scholar 

  • Bagheri A, Paull JG, Rathjen AJ (1996) Genetics of tolerance to high concentrations of soil boron in peas (Pisum sativum L.). Euphytica 87:69–75

    Article  Google Scholar 

  • Bennett SJ (2012) Early growth of field peas under saline and boron toxic soils. In Proceedings of 16th Agronomy Conference 2012, University of New England, Armidale, NSW, 14–18th October 2012

  • Blenda A, Fang DD, Rami JF, Garsmeur O, Luo F, Lacape JM (2012) A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS ONE 7:e45739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bogacki P, Peck DM, Nair RM, Howie J, Oldach KH (2013) Genetic analysis of tolerance to boron toxicity in the legume Medicago truncatula. BMC Plant Biol 13:54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cartwright B, Zarcinas BA, Mayfield AH (1984) Toxic concentrations of boron in a red-brown earth at Gladstone, South Australia. Soil Res 22:261–272

    Article  CAS  Google Scholar 

  • Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci U S A 101:15289–15294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao S, Varshney RK, Szűcs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, Young JD, Marshal DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    Article  PubMed Central  PubMed  Google Scholar 

  • Cloutier S, Ragupathy R, Miranda E, Radovanovic N, Reimer E, Walichnowski A, Ward K, Rowland G, Duguid S, Banik M (2012) Integrated consensus genetic and physical maps of flax (Linum usitatissimum L.). Theor Appl Genet 125:1783–1795

    Article  PubMed Central  PubMed  Google Scholar 

  • Deulvot C, Charrel H, Marty A, Jacquin F, Donnadieu C, Lejeune-Henaut I, Burstin J, Aubert G (2010) Highly-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea. BMC Genomics 11:48

    Article  Google Scholar 

  • Dirlewanger E, Isaac PG, Ranade S, Belajouza M, Cousin R, de Vienne D (1994) Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet 88:17–27

    Article  CAS  PubMed  Google Scholar 

  • Duarte J, Rivière N, Baranger A, Aubert G, Burstin J, Cornet L, Lavaud C, Lejeune-Hénaut I, Martinant J-P, Pichon J-P, Pilet-Nayel M-L, Boutet G (2014) Transcriptome sequencing for high throughput SNP development and genetic mapping in pea. BMC Genomics 15:126

    Article  PubMed Central  PubMed  Google Scholar 

  • Ek M, Eklund M, von Post R, Dayteg C, Henriksson T, Weibull P, Ceptilis A, Issac P, Tuvesson S (2005) Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas 142:86–91

    Article  CAS  PubMed  Google Scholar 

  • Ellis THN, Poyser SJ (2002) An integrated and comparative view of pea genetic and cytogenetic maps. New Phytol 153:17–25

    Article  CAS  Google Scholar 

  • Fondevilla S, Carver TLW, Moreno MT, Rubiales D (2006) Macroscopic and histological characterisation of genes er1 and er2 for powdery mildew resistance in pea. Eur J Plant Pathol 115:309–321

    Article  Google Scholar 

  • Fondevilla S, Rubiales D, Moreno MT, Torres AM (2008) Identification and validation of RAPD and SCAR markers linked to the gene Er3 conferring resistance to Erysiphe pisi DC in pea. Mol Breed 22:193–200

    Article  CAS  Google Scholar 

  • Fondevilla S, Cubero JI, Rubiales D (2011) Confirmation that the Er3 gene, conferring resistance to Erysiphe pisi in pea, is a different gene from er1 and er2 genes. Plant Breed 130:281–282

    Article  CAS  Google Scholar 

  • Fondevilla S, Chattopadhyay C, Kahre N, Rubiales D (2013) Erysiphe trifolii is able to overcome er1 and Er3, but not er2 resistance genes in pea. Eur J Plant Pathol 136:557–563

    Article  CAS  Google Scholar 

  • Galeano CH, Cortés AJ, Fernandez AC, Soler A, Franco-Herrera N et al (2012) Gene-based single nucleotide polymorphism markers for genetic and association mapping in common bean. BMC Genet 13:48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gautami B, Foncéka D, Pandey MK, Moretzsohn MC, Sujay V et al (2012) An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut (Arachis hypogaea L.). PLoS ONE 7:e41213

    Article  PubMed Central  PubMed  Google Scholar 

  • GenStat Committee (2002) The Guide to GenStat Release 6.1—Part 2: Statistics. VSN International, Oxford

  • Harland SC (1948) Inheritance of immunity to mildew in Peruvian forms of Pisum sativum. Heredity 2:263–269

    Article  CAS  PubMed  Google Scholar 

  • Hayes JE, Reid RJ (2004) Boron tolerance in barley is mediated by efflux of boron from the roots. Plant Physiol 136:3376–3382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heringa RJ, Van Nore A, Tazelaar MF (1969) Resistance to powdery mildew (Erysiphe polygoni D.C.) in peas (Pisum sativum L.). Euphytica 18:163–169

    Article  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EAG, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan WZ, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim J-Y, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Humphry M, Reinstädler A, Ivanov S, Bisseling T, Panstruga R (2011) Durable broad‐spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss‐of‐function mutations in PsMLO1. Mol Plant Pathol 12:866–878

    Article  CAS  PubMed  Google Scholar 

  • Hyten DL, Cannon SB, Song Q, Weeks N, Fickus EW, Shoemaker RC, Specht JE, Farmer AD, May GD, Cregan PB (2010) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11:38

    Article  PubMed Central  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P, French-Italian P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Janila P, Sharma B (2004) RAPD and SCAR markers for powdery mildew resistance gene er in pea. Plant Breed 123:271–274

    Article  CAS  Google Scholar 

  • Kalo P, Seres A, Taylor SA, Jakab J, Kevei Z, Kereszt A, Endre G, Ellis THN, Kiss GB (2004) Comparative mapping between Medicago sativa and Pisum sativum. Mol Gen Genomics 272:235–246

    Article  CAS  Google Scholar 

  • Katoch V, Sharma S, Pathania S, Banayal DK, Sharma SK, Rathour R (2010) Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Mol Breed 25:229–237

    Article  CAS  Google Scholar 

  • Kaur S, Pembleton LW, Cogan NOI, Savin KW, Leonforte T, Paul J, Materne M, Forster JW (2012) Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. BMC Genomics 13:104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaur S, Cogan NOI, Stephens A, Noy D, Butsch M, Forster JW, Materne M (2014) EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. Theor Appl Genet 127:703–713

    Article  CAS  PubMed  Google Scholar 

  • Knox MR, Ellis THN (2002) Map expansion in pea. Genetics 162:861–873

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kumar H, Singh RB (1981) Genetic analysis of adult plant resistance to powdery mildew in pea (Pisum sativum L.). Euphytica 30:147–154

    Article  Google Scholar 

  • Lacey A, Davies S (2009) Boron toxicity in WA soils. Farm note 388, Department of Agriculture and food, Western Australia

  • Laucou V, Haurogne K, Ellis N, Rameau C (1998) Genetic mapping in pea: I. RAPD-based linkage map of Pisum sativum. Theor Appl Genet 97:905–915

    Article  CAS  Google Scholar 

  • Leonforte A, Sudheesh S, Cogan NOI, Salisbury PA, Nicolas ME, Materne M, Forster JW, Kaur S (2013) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13:161

    Article  PubMed Central  PubMed  Google Scholar 

  • Loridon K, Mcphee K, Morin J (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L). Theor Appl Genet 111:1022–1031

    Article  CAS  PubMed  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  CAS  PubMed  Google Scholar 

  • Marx GA (1986) Location of er proving elusive. Pisum Newsl 18:39–41

    Google Scholar 

  • Milczarski P, Bolibok-Bragoszewska H, Myśków B, Stojałowski S, Heller-Uszyńska K, Góralska M, Brągoszewski P, Uszyński G, Kilian A, Rakoczy-Trojanowska M (2011) A high density consensus map of rye (Secale cereale L.) based on DArT markers. PLoS ONE 7:e28495

    Article  Google Scholar 

  • Millan T, Winter P, Jüngling R, Gil J, Rubio J, Cho S, Cobos MJ, Iruela M, Rajesh PN, Tekeoglu M, Kahl G, Muehlbauer FJ (2010) A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations. Euphytica 175:175–189

    Article  CAS  Google Scholar 

  • Munjal RL, Chenulu VV, Hora TS (1963) Assessment of losses due to powdery mildew (Erysiphe polygoni) on pea. Indian Phytopathol 19:260–267

    Google Scholar 

  • Muñoz-Amatriaín M, Moscou MJ, Bhat PR, Svensson JT, Bartoš J, Suchánková P, Šimková H, Endo TR, Fenton RD, Lonardi S, Castillo AM, Chao S, Cistué L, Cuesta-Marcos A, Forrest KL, Hayden MJ, Hayes PM, Horsley RD, Makoto K, Moody D, Sato K, Vallés MP, Wulff BBH, Muehlbauer GJ, Doležel J, Close TJ (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 4:238–249

    Article  Google Scholar 

  • Nuttall JG, Armstrong RD, Connor DJ, Matassa VJ (2003) Interrelationships between edaphic factors potentially limiting cereal growth on alkaline soils in north-western Victoria. Soil Res 41:277–292

    Article  CAS  Google Scholar 

  • Ondřej M, Dostálová R, Odstrčilová L (2005) Response of Pisum sativum germplasm resistant to Erysiphe pisi to inoculation with Erysiphe baeumleri, a new pathogen of peas. Plant Prot Sci 41:95–103

    Google Scholar 

  • Pavan S, Jacobsen E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12

  • Pavan S, Schiavull A, Appiano M, Marcotrigiano AR, Cillo F, Visser RGF, Bai Y, Lotti C, Ricciardi L (2011) Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theor Appl Genet 123:1425–1431

    Article  PubMed  Google Scholar 

  • Pavan S, Schiavulli A, Appiano M, Miacola C, Visser RG, Bai Y, Lotti C, Ricciardi L (2013) Identification of a complete set of functional markers for the selection of er1 powdery mildew resistance in Pisum sativum L. Mol Breed 31:247–253

    Article  CAS  Google Scholar 

  • Ren Y, Zhao H, Kou Q, Jiang J, Guo S, Zhang H, Hou W, Zou X, Sun H, Gong G, Levi A, Xu Y (2012) A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS ONE 7:e29453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rubiales D, Fernandez-Aparicio M, Moral A, Barilli E, Sillero JC, Fondevilla S (2009) Disease resistance in pea (Pisum sativum L.) types for autumn sowings in Mediterranean environments. Czech J Genet Plant Breed 45:135–142

    Google Scholar 

  • Santo T, Rashkova M, Alabaça C, Leitão J (2013) The ENU-induced powdery mildew resistant mutant pea (Pisum sativum L.) lines S (er1mut1) and F (er1mut2) harbour early stop codons in the PsMLO1 gene. Mol Breed 32:723–727

    Article  CAS  Google Scholar 

  • Satovic Z, Avila CM, Cruz-Izquierdo S, Díaz-Ruíz R, García-Ruíz GM, Palomino C, Gutiérrez N, Vitale S, Ocaña-Moral S, Gutiérrez MV, Cubero JI, Torres AM (2013) A reference consensus genetic map for molecular markers and economically important traits in faba bean (Vicia faba L). BMC Genomics 14:932

    Article  PubMed Central  PubMed  Google Scholar 

  • Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh SA, Tyerman SD, Langridge P, Sutton T (2010) Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2; 1. Plant Physiol 153:1706–1715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Shirasawa K, Bertioli DJ, Moretzsohn MC, Leal-Bertioli SCM, Varshney RK et al (2013) An integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergences with other legume genomes. DNA Res 20:173–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smýkal P, Aubert G, Burstin J, Coyne CJ, Ellis NTH, Flavell AJ, Ford R, Hýbl M, Macas J, Neumann P, McPhee KE, Redden RJ, Rubiales D, Weller JL, Warkentin TD (2012) Pea (Pisum sativum L.) in the genomic era. Agronomy 2:74–115

    Article  Google Scholar 

  • Sokhi SS, Jhooty JS, Bains SS (1979) Resistance in pea against powdery mildew. Indian Phytopathol 32:571–574

    Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340

    Article  CAS  PubMed  Google Scholar 

  • Timmerman GM, Frew TJ, Weeden NF, Miller AL, Goulden DS (1994) Linkage analysis of er-1, a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D.C.). Theor Appl Genet 88:1050–1055

    Article  CAS  PubMed  Google Scholar 

  • Timmerman-Vaughan G, Frew TJ, Weeden NF (2000) Characterization and linkage mapping of R-gene analogous DNA sequences in pea (Pisum sativum L.). Theor Appl Genet 101:241–247

    Article  CAS  Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD (1997) Inheritance of powdery mildew resistance in pea. Can J Plant Sci 77:307–310

    Article  Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD (1998) Identification of coupling and repulsion phase RAPD markers for powdery mildew resistance gene er1 in pea. Genome 41:440–444

    Article  CAS  Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD (1999) Identification of AFLP markers for powdery mildew resistance gene er2 in pea. Pisum Genet 31:27–29

    Google Scholar 

  • Tonguç M, Weeden NF (2010) Identification and mapping of molecular markers linked to er1 gene in pea. J Plant Mol Biol Biotechnol 1:1–5

    Google Scholar 

  • Vaid A, Tyagi P (1997) Genetics of powdery mildew resistance in pea. Euphytica 96:203–206

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:7–78

    Article  Google Scholar 

  • Wang J, Lydiate DJ, Parkin IA, Falentin C, Delourme R et al (2011) Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa. BMC Genomics 12:101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2012) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  • Warkentin TD, Rashid KY, Xue AG (1996) Fungicidal control of powdery mildew in field pea. Can J Plant Sci 76:933–935

    Article  CAS  Google Scholar 

  • Weeden NF, Boone WE (1999) Mapping the Rb locus on linkage group III using long PCR followed by endonuclease digestion. Pisum Genet 31:36

    Google Scholar 

  • Weeden NF, Swiecicki WK, Timmerman-Vaughan GM, Ellis THN, Ambrose M (1996) The current pea linkage map. Pisum Genet 28:1–4

    Google Scholar 

  • Weeden NF, Ellis THN, Timmerman-Vaughan GM, Swiecicki WK, Rozov SM, Berdnikov VA (1998) A consensus linkage map for Pisum sativum. Pisum Genet 30:1–3

    Google Scholar 

  • Wu Y, Close TJ, Lonardi S (2011) Accurate construction of consensus genetic maps via integer linear programming. IEEE/ACM Trans Comput Biol Bioinforma 8:381–394. doi:10.1109/TCBB.2010.35

    Article  Google Scholar 

  • Yap IV, Schneider D, Kleinberg J, Matthews D, Cartinhour S, McCouch SR (2003) A graph-theoretic approach to comparing and integrating genetic, physical and sequence-based maps. Genetics 165:2235–2247

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yau SK, Ryan J (2008) Boron toxicity tolerance in crops: a viable alternative to soil amelioration. Crop Sci 48:854–865

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Victorian Department of Environment and Primary Industries and the Grains Research and Development Council, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Forster.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional File 1

a Assessment scale for powdery mildew infection in field pea: This file contains details of the assessment scale for severity of powdery mildew infection in field pea. (DOCX 13 kb)

11105_2014_837_MOESM2_ESM.docx

b Assessment scale for boron tolerance in field pea: This file contains details of the assessment scale for levels of boron tolerance in field pea (DOCX 12 kb)

Additional File 2

a Kaspa × Yarrum linkage map of field pea: This file contains the visual representation of linkage maps of field pea based on RILs of Kaspa × Yarrum showing the location of the QTL-containing region for powdery mildew resistance. The name is provided at the top of each LG. Distances of the loci (cM) are shown to the left, and the names of loci are shown to the right side of the linkage groups. For presentation purposes, only one of a set of co-located genetic markers are shown on the map. (PPT 570 kb)

11105_2014_837_MOESM4_ESM.ppt

b Kaspa × ps1771 linkage map of field pea: This file contains the visual representation of linkage maps of field pea based on RILs of Kaspa × ps1771 showing the location of QTL containing region for powdery mildew resistance and boron tolerance. The name is provided at the top of each LG. Distances of the loci (cM) are shown to the left, and the names of loci are shown to the right side of the linkage groups. For presentation purposes, only one of a set of co-located genetic markers are shown on the map. (PPT 502 kb)

Additional File 3

a Comparison between linkage group (Ps I) of Kaspa × Yarrum and Kaspa × ps1771: This file shows the visual representation of Ps I from both the Kaspa × Yarrum and Kaspa × ps1771 maps, and the common marker loci between them. Red coloured lines represent the corresponding positions of common markers. (PPTX 93 kb)

11105_2014_837_MOESM6_ESM.pptx

b Comparison between linkage group (Ps II) of Kaspa × Yarrum and Kaspa × ps1771: This file shows the visual representation of Ps II from both Kaspa × Yarrum and Kaspa × ps1771 maps, and the common marker loci between them. Red coloured lines represent the corresponding positions of common markers. (PPTX 58 kb)

11105_2014_837_MOESM7_ESM.pptx

c Comparison between linkage group (Ps III) of Kaspa × Yarrum and Kaspa × ps1771: This file shows the visual representation of Ps III from both Kaspa × Yarrum and Kaspa × ps1771 maps, and the common marker loci between them. Red coloured lines represent the corresponding positions of common markers. (PPTX 78 kb)

11105_2014_837_MOESM8_ESM.pptx

d Comparison between linkage group (Ps IV) of Kaspa × Yarrum and Kaspa × ps1771: This file shows the visual representation of Ps IV from both Kaspa × Yarrum and Kaspa × ps1771 maps, and the common marker loci between them. Red coloured lines represent the corresponding positions of common markers. (PPTX 77 kb)

11105_2014_837_MOESM9_ESM.pptx

e Comparison between linkage group (PS V) of Kaspa × Yarrum and Kaspa × ps1771: This file shows the visual representation of Ps V from both Kaspa × Yarrum and Kaspa × ps1771 maps, and the common marker loci between them. Red coloured lines represent the corresponding positions of common markers. (PPTX 64 kb)

11105_2014_837_MOESM10_ESM.pptx

f Comparison between linkage group (Ps VI) of Kaspa × Yarrum and Kaspa × ps1771: This file shows the visual representation of Ps VI from both the Kaspa × Yarrum and Kaspa × ps1771 maps, and the common marker loci between them. Red coloured lines represent the corresponding positions of common markers. (PPTX 62 kb)

11105_2014_837_MOESM11_ESM.pptx

g Comparison between linkage group (Ps VII) of Kaspa × Yarrum and Kaspa × ps1771: This file shows the visual representation of Ps VII from both the Kaspa × Yarrum and Kaspa × ps1771 maps, and the common marker loci between them. Red coloured lines represent the corresponding positions of common markers. (PPTX 76 kb)

Additional File 4

a Linkage map statistics from Kaspa × Yarrum RIL mapping population: This file contains details of different markers (SSRs and SNPs) and their corresponding positions on different LGs. (XLSX 17 kb)

11105_2014_837_MOESM13_ESM.xlsx

b Linkage map statistics from Kaspa × ps1771 RIL mapping population: This file contains details of different markers (SSRs and SNPs) and their corresponding positions on different LGs. (XLSX 18 kb)

Additional File 5

Preliminary composite map statistics: This file contains details of different markers (SSRs and SNPs) and their corresponding positions on different LGs. (XLSX 23 kb)

Additional File 6

BLAST results of the integrated map: The data represent the BLAST-based sequence analysis of DNA sequences underlying SNP markers assigned to the preliminary composite map against transcriptome sequencing data. (XLSX 95 kb)

Additional File 7

Consensus genetic map statistics: This file contains details of different markers (SSRs and SNPs) and their corresponding positions on different LGs. (XLSX 48 kb)

Additional File 8

a Frequency distribution histogram: This file contains frequency histograms generated for boron index and boron plant symptom score in the Kaspa × ps1771 mapping population. (PPTX 105 kb)

11105_2014_837_MOESM18_ESM.pptx

b Frequency distribution histogram: This file contains frequency histograms generated for powdery mildew symptom scores and percentage leaf necrosis in the Kaspa × Yarrum mapping population. (PPTX 66 kb)

Additional File 9

PsMLO1 gene sequence: This file contains sequence of PsMLO1 gene obtained from resequencing analysis. (DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudheesh, S., Lombardi, M., Leonforte, A. et al. Consensus Genetic Map Construction for Field Pea (Pisum sativum L.), Trait Dissection of Biotic and Abiotic Stress Tolerance and Development of a Diagnostic Marker for the er1 Powdery Mildew Resistance Gene. Plant Mol Biol Rep 33, 1391–1403 (2015). https://doi.org/10.1007/s11105-014-0837-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0837-7

Keywords

Navigation