Skip to main content
Log in

Gibberellins Affect Tobacco Growth and Development in a Dose Dependent Manner through Genes Involved in Metabolic Processes

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Summary

Gibberellins (GAs) play an important role in growth control in plants, but little is known regarding their effects on metabolic processes, which can further regulate plant growth. To increase our understanding of the metabolic regulatory mechanism of GAs during plant growth and development, microarray analysis was performed to identify a subgroup of GA-regulated genes by comparing the expression levels of genes in GA over-accumulation, wild-type (WT), and GA downregulated tobacco plants. The modulation of gene expression and metabolic adjustment in response to changes in plant growth in the presence of various GA concentrations was evaluated. The results showed that increasing endogenous bioactive GA levels increased leaf growth, with giant phenotypes were observed in the presence of bioactive GA levels in the three tobacco lines. Moreover, GA affects mainly the early period of plant growth rather than the later stages. Microarray analyses indicated that 163 genes (FC > 3.0) were affected by the GA concentration. Three key genes related to lipid metabolism, one gene involved in nitrogen metabolism, and four genes involved in cell wall component synthesis were regulated by GA. These results revealed an interaction between GAs and growth control, which coordinates lipid metabolism, nitrogen metabolism, and cell wall extension. The findings increase our understanding on the role of GAs in plant growth and development at the level of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achard P, Gong F et al (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20(8):2117–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Achard P, Cheng H et al (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311(5757):91–4

    Article  CAS  PubMed  Google Scholar 

  • Ait-Ali T, Frances S et al (1999) Regulation of gibberellin 20-oxidase and gibberellin 3beta-hydroxylase transcript accumulation during De-etiolation of pea seedlings. Plant Physiol 121(3):783–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Andre C, Haslam RP et al (2012) Feedback regulation of plastidic acetyl-CoA carboxylase by 18:1-acyl carrier protein in Brassica napus. Proc Natl Acad Sci U S A 109(25):10107–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beal C, Fonseca F et al (2001) Resistance to freezing and frozen storage of Streptococcus thermophilus is related to membrane fatty acid composition. J Dairy Sci 84(11):2347–56

    Article  CAS  PubMed  Google Scholar 

  • Bennett SA (2004) Nitrogen mineralization challenges of a changing paradigm. Ecology 3(85):591–602

    Google Scholar 

  • Braun N, Wyrzykowska J et al (2008) Conditional repression of AUXIN BINDING PROTEIN1 reveals that it coordinates cell division and cell expansion during postembryonic shoot development in Arabidopsis and tobacco. Plant Cell 20(10):2746–62

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Braybrook SA, Kuhlemeier C (2010) How a plant builds leaves. Plant Cell 22(4):1006–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dayan J, Voronin N et al (2012) Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. Plant Cell 24(1):66–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Efroni I, Eshed Y et al (2010) Morphogenesis of simple and compound leaves: a critical review. Plant Cell 22(4):1019–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frigerio M, Alabadi D et al (2006) Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 142(2):553–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujioka S, Yamane H et al (1988) Qualitative and Quantitative Analyses of Gibberellins in Vegetative Shoots of Normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 Seedlings of Zea mays L. Plant Physiol 88(4):1367–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldberg I, Eschar L (1977) Stability of lactic Acid bacteria to freezing as related to their fatty acid composition. Appl Environ Microbiol 33(3):489–96

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gou J, Strauss SH et al (2010) Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. Plant Cell 22(3):623–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grindstaff KK, Fielding LA et al (1996) Effect of gibberellin and heat shock on the lipid composition of endoplasmic reticulum in barley aleurone layers. Plant Physiol 110(2):571–581

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harada T, Torii Y et al (2011) Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening. J Exp Bot 62(2):815–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hasson A, Blein T et al (2010) Leaving the meristem behind: the genetic and molecular control of leaf patterning and morphogenesis. C R Biol 333(4):350–60

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Phillips AL (2000a) Gibberellin metabolism: New insights revealed by the genes. Trends Plant Sci 5(12):523–30

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Phillips AL (2000b) Manipulation of hormone biosynthetic genes in transgenic plants. Curr Opin Biotechnol 11(2):130–7

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Kamiya Y (1997) GIBBERELLIN BIOSYNTHESIS: Enzymes, genes and their regulation. Annu Rev Plant Physiol Plant Mol Biol 48:431–460

    Article  CAS  PubMed  Google Scholar 

  • Herbert D, Walker KA et al (1997) Acetyl-CoA Carboxylase—a graminicide target site. Pestic Sci 50(1):67–71

    Article  CAS  Google Scholar 

  • Jacobs WP, Case DB (1965) Auxin transport, gibberellin, and apical dominance. science 148(3678):1729–31

    Article  CAS  PubMed  Google Scholar 

  • Jan A, Yang G et al (2004) Characterization of a xyloglucan endotransglucosylase gene that is up-regulated by gibberellin in rice. Plant Physiol 136(3):3670–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jan A, Nakamura H et al (2006) Gibberellin regulates mitochondrial pyruvate dehydrogenase activity in rice. Plant Cell Physiol 47(2):244–53

    Article  CAS  PubMed  Google Scholar 

  • Kamachi K, Yamaya T et al (1991) A role for glutamine synthetase in the remobilization of leaf nitrogen during natural senescence in rice leaves. Plant Physiol 96(2):411–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keyes G, Sorrells ME et al (1990) Gibberellic acid regulates cell wall extensibility in wheat (Triticum aestivum L.). Plant Physiol 92(1):242–5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Sima W et al (2012) Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis. J Exp Bot 63(18):6407–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lipson D, Sholm TN (2001) The unexpected versatility of plants: Organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128(3):305–316

    Article  CAS  PubMed  Google Scholar 

  • Ljung K, Bhalerao RP et al (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28(4):465–74

    Article  CAS  PubMed  Google Scholar 

  • Madoka Y, Tomizawa K et al (2002) Chloroplast transformation with modified accD operon increases acetyl-CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco. Plant Cell Physiol 43(12):1518–25

    Article  CAS  PubMed  Google Scholar 

  • Magome H, Yamaguchi S et al (2004) dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37(5):720–9

    Article  CAS  PubMed  Google Scholar 

  • Man H, Pollmann S et al (2011) Increased glutamine in leaves of poplar transgenic with pine GS1a caused greater anthranilate synthetase alpha-subunit (ASA1) transcript and protein abundances: an auxin-related mechanism for enhanced growth in GS transgenics? J Exp Bot 62(13):4423–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsui A, Yokoyama R et al (2005) AtXTH27 plays an essential role in cell wall modification during the development of tracheary elements. Plant J 42(4):525–34

    Article  CAS  PubMed  Google Scholar 

  • Mauriat M, Sandberg LG et al (2011) Proper gibberellin localization in vascular tissue is required to control auxin-dependent leaf development and bud outgrowth in hybrid aspen. Plant J 67(5):805–16

    Article  CAS  PubMed  Google Scholar 

  • Mimura M, Nagato Y et al (2012) Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway. Planta 235(5):1081–9

    Article  CAS  PubMed  Google Scholar 

  • Misra P, Pandey A et al (2010) Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiol 152(4):2258–68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Mutasa-Gottgens E, Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 60(7):1979–89

    Article  PubMed  Google Scholar 

  • Nelissen H, Rymen B et al (2012a) A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division. Curr Biol 22(13):1183–7

    Article  CAS  PubMed  Google Scholar 

  • Nelissen H, Rymen B et al (2012b) A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division. Curr Biol 22(13):1183–7

    Article  CAS  PubMed  Google Scholar 

  • Niu S, Li Z et al (2013) Proper gibberellin localization in vascular tissue is required to regulate adventitious root development in tobacco. J Exp Bot 64(11):3411–3424

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7(7):957–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olszewski N, Sun TP et al (2002) Gibberellin signaling: Biosynthesis, catabolism, and response pathways. Plant Cell 14(Suppl):S61–80

    PubMed Central  CAS  PubMed  Google Scholar 

  • O'Neill DP, Ross JJ (2002) Auxin regulation of the gibberellin pathway in pea. Plant Physiol 130(4):1974–82

    Article  PubMed Central  PubMed  Google Scholar 

  • Phillips AL, Ward DA et al (1995) Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol 108(3):1049–57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rastogi S, Kumar R et al (2013) 4-coumarate: CoA ligase partitions metabolites for eugenol biosynthesis. Plant Cell Physiol 54(8):1238–52

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt D, Mandel T et al (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12(4):507–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ribeiro DM, Araujo WL et al (2012) Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis. J Exp Bot 63(7):2769–2786

  • Ross JJ, Murfet IC et al (1993) Distribution of gibberellins in Lathyrus odoratus L. and their role in leaf growth. Plant Physiol 102(2):603–608

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sakamoto T, Miura K et al (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134(4):1642–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saladie M, Rose JK et al (2006) Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. Plant J 47(2):282–95

    Article  CAS  PubMed  Google Scholar 

  • Scarpella E, Barkoulas M et al (2010) Control of leaf and vein development by auxin. Cold Spring Harb Perspect Biol 2(1):a001511

  • Serrani JC, Ruiz-Rivero O et al (2008) Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J 56(6):922–34

    Article  CAS  PubMed  Google Scholar 

  • Shintani DK, Ohlrogge JB (1995) Feedback inhibition of fatty acid synthesis in tobacco suspension cells. Plant J 7(4):577–587

    Article  CAS  Google Scholar 

  • Sieburth LE (1999) Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiol 121(4):1179–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh AP, Tripathi SK et al (2011) Petal abscission in rose is associated with the differential expression of two ethylene-responsive xyloglucan endotransglucosylase/hydrolase genes, RbXTH1 and RbXTH2. J Exp Bot 62(14):5091–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55:197–223

    Article  CAS  PubMed  Google Scholar 

  • Suo, H. and Q. Ma, et al. (2012). "Overexpression of AtDREB1A Causes a Severe Dwarf Phenotype by Decreasing Endogenous Gibberellin Levels in Soybean [Glycine max (L.) Merr]." PLoS One 7 (9): e45568.

  • Tanaka-Ueguchi M, Itoh H et al (1998) Over-expression of a tobacco homeobox gene, NTH15, decreases the expression of a gibberellin biosynthetic gene encoding GA 20-oxidase. Plant J 15(3):391–400

    Article  CAS  PubMed  Google Scholar 

  • Van Sandt VS, Suslov D et al (2007) Xyloglucan endotransglucosylase activity loosens a plant cell wall. Ann Bot 100(7):1467–73

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang GK, Zhang M et al (2012) Increased gibberellin contents contribute to accelerated growth and development of transgenic tobacco overexpressing a wheat ubiquitin gene. Plant Cell Rep 31(12):2215–2227

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Jeong BR et al (2005) Change in XET activities, cell wall extensibility and hypocotyl elongation of soybean seedlings at low water potential. Planta 220(4):593–601

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–51

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama R, Rose JK et al (2004) A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiol 134(3):1088–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yokoyama R, Nishitani K (2001) A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell Physiol 42(10):1025–33

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from The Fundamental Research Funds for the Central Universities (No. YX2014-12), Program for Changjiang Scholars and Innovative Research Team in University (IRT13047), and the State Forestry Bureau 948 Project (No. 2012-4-40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 57 kb)

ESM 2

(DOC 276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Niu, S., Yuan, H. et al. Gibberellins Affect Tobacco Growth and Development in a Dose Dependent Manner through Genes Involved in Metabolic Processes. Plant Mol Biol Rep 33, 1259–1269 (2015). https://doi.org/10.1007/s11105-014-0832-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0832-z

Keywords

Navigation