Skip to main content
Log in

Polycomb Group Gene EbEZ from Apomictic Eulaliopsis binata Ectopic Expressed in Rice and Regulate Seed Development by Interacting with the OsFIE1 Protein

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Polycomb group (PcG) protein MEDEA (MEA), one of the Enhancer of Zeste [E(z)], represses endosperm development in Arabidopsis until fertilization occurs. The Eulaliopsis binata is an apomictic species that forms endosperm asexually. Up to now, little is known about their homologs in apomictic plants. Here, E(z)-like genes EbEZ1 and EbEZ2 were cloned from Eulaliopsis. The EbEZs were ubiquitously expressed in vegetative and reproductive organs while their high mRNAs were accumulated in seed. In addition, up-regulated expression of EbEZ1 in mature seed was in accompanied with hypomethylation of the promoter. Transgenic EbEZ1 rice lines produced decreased seed setting and abnormal endosperm and embryo. Moreover, the expression level of genes which were co-expressed with OsCLF (a homolog of EbEZ1) were up-regulated, indicating that EbEZ1 may integrate into the regulatory network of rice endogenous PcG complex which was supported by EbEZ1 interaction in vitro with the rice FERTILIZATION INDEPENDENT ENDOSPERM 1 (FIE1) PcG protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CLF:

Curly leaf

MEA:

Medea

EMF:

Embryonic flower

VRN:

Vernalization

SWN:

Swinger

MSI:

MULTICOPYSUPRESSOR

FLC:

Flowering locus c

FIS:

Fertilization independent seed

DAP:

Day after pollination

DBP:

Day before pollination

PCR:

Polymerase chain reaction

ORF:

Open reading frame

References

  • Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16(Suppl):S228–S245. doi:10.1105/tpc.017921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298(5595):1039–1043. doi:10.1126/science.1076997

    Article  CAS  PubMed  Google Scholar 

  • Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci U S A 94(8):4223–4228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111(2):185–196

    Article  CAS  PubMed  Google Scholar 

  • Doyle MR, Amasino RM (2009) A single amino acid change in the enhancer of zeste ortholog CURLY LEAF results in vernalization-independent, rapid flowering in Arabidopsis. Plant Physiol 151(3):1688–1697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Folsom JJ, Begcy K, Hao X, Wang D, Walia H (2014) Rice FIE1 regulates seed size under heat stress by controlling early endosperm development. Plant Physiol 165(1):238–248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, Coupland G (1997) A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386(6620):44–51. doi:10.1038/386044a0

    Article  CAS  PubMed  Google Scholar 

  • Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science 280(5362):446–450

    Article  CAS  PubMed  Google Scholar 

  • Guitton AE, Page DR, Chambrier P, Lionnet C, Faure JE, Grossniklaus U, Berger F (2004) Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131(12):2971–2981. doi:10.1242/dev.01168

    Article  CAS  PubMed  Google Scholar 

  • Haun WJ, Laoueille-Duprat S, O’Connell MJ, Spillane C, Grossniklaus U, Phillips AR, Kaeppler SM, Springer NM (2007) Genomic imprinting, methylation and molecular evolution of maize Enhancer of zeste (Mez) homologs. Plant J 49(2):325–337

    Article  CAS  PubMed  Google Scholar 

  • Hennig L, Derkacheva M (2009) Diversity of Polycomb group complexes in plants: same rules, different players? Trends Genet 25(9):414–423

    Article  CAS  PubMed  Google Scholar 

  • How Kit A, Boureau L, Stammitti-Bert L, Rolin D, Teyssier E, Gallusci P (2010) Functional analysis of SlEZ1 a tomato enhancer of zeste (E(z)) gene demonstrates a role in flower development. Plant Mol Biol 74(3):201–213. doi:10.1007/s11103-010-9657-9

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Wang Y, He Y (2008) Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2 components. PLoS ONE 3(10):e3404. doi:10.1371/journal.pone.0003404

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones RS, Gelbart WM (1993) The Drosophila Polycomb-group gene Enhancer of zeste contains a region with sequence similarity to trithorax. Mol Cell Biol 13(10):6357–6366

    PubMed Central  CAS  PubMed  Google Scholar 

  • Katz A, Oliva M, Mosquna A, Hakim O, Ohad N (2004) FIE and CURLY LEAF Polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant J 37(5):707–719

    Article  CAS  PubMed  Google Scholar 

  • Kim GT, Tsukaya H, Uchimiya H (1998) The CURLY LEAF gene controls both division and elongation of cells during the expansion of the leaf blade in Arabidopsis thaliana. Planta 206(2):175–183

    Article  CAS  PubMed  Google Scholar 

  • Kohler C, Villar CB (2008) Programming of gene expression by Polycomb group proteins. Trends Cell Biol 18(5):236–243

    Article  PubMed  Google Scholar 

  • Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16(22):2893–2905. doi:10.1101/gad.1035902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu DD, Dong QL, Fang MJ, Chen KQ, Hao YJ (2012a) Ectopic expression of an apple apomixis-related gene MhFIE induces co-suppression and results in abnormal vegetative and reproductive development in tomato. J Plant Physiol 169(18):1866–1873

    Article  CAS  PubMed  Google Scholar 

  • Liu DD, Dong QL, Sun C, Wang QL, You CX, Yao YX, Hao YJ (2012b) Functional characterization of an apple apomixis-related MhFIE gene in reproduction development. Plant Sci 185–186:105–111

    Article  PubMed  Google Scholar 

  • Lopes MA, Larkins BA (1993) Endosperm origin, development, and function. Plant Cell 5(10):1383–1399. doi:10.1105/tpc.5.10.1383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu Z, Huang X, Ouyang Y, Yao J (2013) Genome-wide identification, phylogenetic and co-expression analysis of OsSET gene family in rice. PLoS ONE 8(6):e65426. doi:10.1371/journal.pone.0065426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A (2000) Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci U S A 97(19):10637–10642. doi:10.1073/pnas.170292997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo M, Platten D, Chaudhury A, Peacock WJ, Dennis ES (2009) Expression, imprinting, and evolution of rice homologs of the Polycomb group genes. Mol Plant 2(4):711–723

    Article  CAS  PubMed  Google Scholar 

  • Muller J, Verrijzer P (2009) Biochemical mechanisms of gene regulation by Polycomb group protein complexes. Curr Opin Genet Dev 19(2):150–158

    Article  PubMed  Google Scholar 

  • Muller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O’Connor MB, Kingston RE, Simon JA (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111(2):197–208

    Article  CAS  PubMed  Google Scholar 

  • Ng DW, Wang T, Chandrasekharan MB, Aramayo R, Kertbundit S, Hall TC (2007) Plant SET domain-containing proteins: structure, function and regulation. Biochim Biophys Acta 1769(5–6):316–329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Preuss D (1999) Chromatin silencing and Arabidopsis development: a role for Polycomb proteins. Plant Cell 11(5):765–768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodrigues JC, Tucker MR, Johnson SD, Hrmova M, Koltunow AM (2008) Sexual and apomictic seed formation in Hieracium requires the plant Polycomb-group gene FERTILIZATION INDEPENDENT ENDOSPERM. Plant Cell 20(9):2372–2386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schonrock N, Bouveret R, Leroy O, Borghi L, Kohler C, Gruissem W, Hennig L (2006) Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway. Genes Dev 20(12):1667–1678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwartz YB, Pirrotta V (2007) Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 8(1):9–22

    Article  CAS  PubMed  Google Scholar 

  • Schwartz YB, Pirrotta V (2008) Polycomb complexes and epigenetic states. Curr Opin Cell Biol 20(3):266–273

    Article  CAS  PubMed  Google Scholar 

  • Spillane C, Schmid KJ, Laoueille-Duprat S, Pien S, Escobar-Restrepo JM, Baroux C, Gagliardini V, Page DR, Wolfe KH, Grossniklaus U (2007) Positive Darwinian selection at the imprinted MEDEA locus in plants. Nature 448(7151):349–352

    Article  CAS  PubMed  Google Scholar 

  • Springer NM, Danilevskaya ON, Hermon P, Helentjaris TG, Phillips RL, Kaeppler HF, Kaeppler SM (2002) Sequence relationships, conserved domains, and expression patterns for maize homologs of the Polycomb group genes E(z), esc, and E(Pc). Plant Physiol 128(4):1332–1345. doi:10.1104/pp. 010742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thorstensen T, Grini PE, Aalen RB (2011) SET domain proteins in plant development. Biochim Biophys Acta 1809(8):407–420

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Tyson MD, Jackson SS, Yadegari R (2006) Partially redundant functions of two SET-domain Polycomb-group proteins in controlling initiation of seed development in Arabidopsis. Proc Natl Acad Sci U S A 103(35):13244–13249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whitcomb SJ, Basu A, Allis CD, Bernstein E (2007) Polycomb group proteins: an evolutionary perspective. Trends Genet 23(10):494–502

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Zhou DX, Wang S, Zhang Q (2003) Development of enhancer trap lines for functional analysis of the rice genome. Plant J 35(3):418–427

    Article  CAS  PubMed  Google Scholar 

  • Yadegari R, Kinoshita T, Lotan O, Cohen G, Katz A, Choi Y, Nakashima K, Harada JJ, Goldberg RB, Fischer RL, Ohad N (2000) Mutations in the FIE and MEA genes that encode interacting Polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 12(12):2367–2382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yao J-L, Zhou Y, Hu C-G (2007) Apomixis in Eulaliopsis binata: characterization of reproductive mode and endosperm development. Sex Plant Reprod 20(3):151–158

    Article  Google Scholar 

  • Yoshida N, Yanai Y, Chen L, Kato Y, Hiratsuka J, Miwa T, Sung ZR, Takahashi S (2001) EMBRYONIC FLOWER2, a novel Polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell 13(11):2471–2481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Cheng Z, Qin R, Qiu Y, Wang JL, Cui X, Gu L, Zhang X, Guo X, Wang D, Jiang L, Wu CY, Wang H, Cao X, Wan J (2012) Identification and characterization of an epi-allele of FIE1 reveals a regulatory linkage between two epigenetic marks in rice. Plant Cell 24(11):4407–4421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jinzhi Zhang for the helpful discussion. This research was supported by grants from the Fundamental Research Funds for the Central Universities (Grant No.2012MBDX012) and the National Natural Science Foundation of China (Grant No. 30971551). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of Interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jialing Yao.

Additional information

Yuting Ye and Qiuming She contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

The sequences alignment and domain analysis of AtCLF, AtSWN, AtMEA, EbEZ1, and EbEZ2 proteins. (DOC 299 kb)

Fig. S2

Sequence analysis of EbEZ1 promoter on Methyl Primer Express v1.0 Microsoft. (DOC 43 kb)

Table S1

List of primer sequences used in this study. (DOC 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., She, Q., Ma, K. et al. Polycomb Group Gene EbEZ from Apomictic Eulaliopsis binata Ectopic Expressed in Rice and Regulate Seed Development by Interacting with the OsFIE1 Protein. Plant Mol Biol Rep 33, 1314–1326 (2015). https://doi.org/10.1007/s11105-014-0831-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0831-0

Keywords

Navigation