Advertisement

Plant Molecular Biology Reporter

, Volume 33, Issue 5, pp 1599–1610 | Cite as

Differential Expression of Two-Component System–Related Drought-Responsive Genes in Two Contrasting Drought-Tolerant Soybean Cultivars DT51 and MTD720 Under Well-Watered and Drought Conditions

  • Nguyen Binh Anh Thu
  • Xuan Lan Thi Hoang
  • Thuy-Dung Ho Nguyen
  • Nguyen Phuong ThaoEmail author
  • Lam-Son Phan TranEmail author
Brief Communication

Abstract

Two-component systems (TCSs) have been shown to participate in plant responses to drought. In this study, results of real-time quantitative PCR (RT-qPCR) of 26 selected dehydration-responsive TCS-related genes in roots and shoots of two Vietnamese soybean cultivars (DT51 and MTD720) with contrasting drought-tolerant phenotypes suggest a positive correlation between the number of drought-inducible TCS genes and their drought-tolerant ability. In addition, expression analyses of the roots and shoots indicated that DT51 and MTD720 had distinct drought-responsive TCS expression profiles, suggesting that expression of TCS-related genes are genotype and tissue dependent. Furthermore, nine TCS genes (GmHK07, 16, GmHP08, GmRR04, 16, 32, 34, GmPRR39, and 44) potentially associated with enhanced drought tolerance were identified. Particularly, GmRR34, showing its higher expression levels under both normal and drought conditions in DT51 roots versus MTD720 roots, might be a potential positive regulator of drought tolerance. On the other hand, GmPRR44 was highly recommended as a potential negative regulator of drought tolerance because it exhibited lower expression levels in both tissues of the drought-tolerant DT51 than in those of the drought-sensitive MTD720 under both stressed and unstressed conditions. These two genes deserve in-depth characterization as promising candidates for development of soybean cultivars with improved drought tolerance by using genetic engineering.

Keywords

Comparative expression analysis Drought Real-time quantitative PCR Soybean Two-component system 

Notes

Acknowledgments

We would like to thank Dr. Tran Thi Truong from Vietnam Legumes Research and Development Center, and Dr. Nguyen Phuoc Dang from Can Tho University for providing soybean seeds. This study was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 106.16-2011.37 to Nguyen Phuong Thao.

Supplementary material

11105_2014_825_MOESM1_ESM.xls (26 kb)
ESM 1 Detailed characteristics of dehydration-responsive soybean TCS-related genes (XLS 26 kb)
11105_2014_825_MOESM2_ESM.xls (21 kb)
ESM 2 Amplification efficiencies of primer pairs obtained by standard curve method (XLS 21 kb)
11105_2014_825_MOESM3_ESM.xls (32 kb)
ESM 3 cis-regulatory motif search in 1500-bp promoter regions of nine TCS-related candidate genes (XLS 32 kb)
11105_2014_825_MOESM4_ESM.xls (28 kb)
ESM 4 Correlation between data related to growth and physiological traits and expression data of TCS-related genes in DT51 and MTD720 (XLS 27 kb)
11105_2014_825_MOESM5_ESM.tif (496 kb)
ESM 5 Differential physiological responses of MTD720 and DT51 plants. 12-d-old soybean seedlings were exposed to drought for 10 days and photograph was taken. (TIFF 496 kb)
11105_2014_825_MOESM6_ESM.xls (24 kb)
ESM 6 Ct values of reference genes in unstressed and stressed tissues of MTD720 and DT51 soybean cultivars (XLS 24 kb)
11105_2014_825_MOESM7_ESM.xls (38 kb)
ESM 7 Sequence similarity of nine soybean TCS-related proteins and their Arabidopsis counterparts (XLS 37 kb)

References

  1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15(1):63–78PubMedCentralCrossRefPubMedGoogle Scholar
  2. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311(5757):91–94CrossRefPubMedGoogle Scholar
  3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402PubMedCentralCrossRefPubMedGoogle Scholar
  4. Andres A, Donovan SM, Kuhlenschmidt MS (2009) Soy isoflavones and virus infections. J Nutr Biochem 20(8):563–569CrossRefPubMedGoogle Scholar
  5. Bartels D, Phillips J (2010) Drought stress tolerance. In: Kempken F, Jung C (eds) Genetic modification of plants. Springer Berlin, pp 139–157Google Scholar
  6. Behnam B, Iuchi S, Fujita M, Fujita Y, Takasaki H, Osakabe Y, Yamaguchi-Shinozaki K, Kobayashi M, Shinozaki K (2013) Characterization of the promoter region of an Arabidopsis gene for 9-cis-epoxycarotenoid dioxygenase involved in dehydration-inducible transcription. DNA Res 20(4):315–324PubMedCentralCrossRefPubMedGoogle Scholar
  7. Carroll SB, Grenier JK, Weatherbee SD (2001) From DNA to diversity: molecular genetics and the evolution of animal design. In, 1st edn. Blackwell Science Publishing, Malden, p 214Google Scholar
  8. De Oliveira RR, Chalfun-Junior A, Paiva LV, Andrade AC (2010) In silico and quantitative analyses of MADS-Box genes in Coffea arabica. Plant Mol Biol Rep 28(3):460–472CrossRefGoogle Scholar
  9. Fukushima A (2009) Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination. Proc Natl Acad Sci U S A 106(17):7251–7256Google Scholar
  10. Ha CV, Le DT, Nishiyama R, Watanabe Y, Tran UT, Dong NV, Tran L-SP (2013) Characterization of the newly developed soybean cultivar DT2008 in relation to the model variety W82 reveals a new genetic resource for comparative and functional genomics for improved drought tolerance. Biomed Res Int 2013:759657Google Scholar
  11. Hazen SP, Pathan MS, Sanchez A, Baxter I, Dunn M, Estes B, Chang H-S, Zhu T, Kreps JA, Nguyen HT (2005) Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array. Funct Integr Genomic 5(2):104–116CrossRefGoogle Scholar
  12. Hibbeler S, Scharsack JP, Becker S (2008) Housekeeping genes for quantitative expression studies in the three-spined stickleback Gasterosteus aculeatus. BMC Mol Biol 9(1):18PubMedCentralCrossRefPubMedGoogle Scholar
  13. Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39(2):969–987Google Scholar
  14. Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E, Lewis MW, Maxwell BB, Perdue TD, Schaller GE, Alonso JM (2006) The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18(11):3073–3087PubMedCentralCrossRefPubMedGoogle Scholar
  15. Hwang I, Chen HC, Sheen J (2002) Two-component signal transduction pathways in Arabidopsis. Plant Physiol 129(2):500–515PubMedCentralCrossRefPubMedGoogle Scholar
  16. Ito Y, Kurata N (2006) Identification and characterization of cytokinin-signalling gene families in rice. Gene 382:57–65CrossRefPubMedGoogle Scholar
  17. Jain D, Chattopadhyay D (2010) Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biol 10:24Google Scholar
  18. Jain M, Tyagi AK, Khurana JP (2008) Differential gene expression of rice two-component signaling elements during reproductive development and regulation by abiotic stress. Funct Integr Genomic 8(2):175–180CrossRefGoogle Scholar
  19. Kang NY, Cho C, Kim NY, Kim J (2012) Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of Arabidopsis thaliana. J Plant Physiol 169(14):1382–1391CrossRefPubMedGoogle Scholar
  20. Kang NY, Cho C, Kim J (2013) Inducible expression of Arabidopsis response regulator 22 (ARR22), a Type-C ARR, in transgenic Arabidopsis enhances drought and freezing tolerance. PLoS One 8(11):e79248PubMedCentralCrossRefPubMedGoogle Scholar
  21. Karan R, Singla-Pareek SL, Pareek A (2009) Histidine kinase and response regulator genes as they relate to salinity tolerance in rice. Funct Integr Genomic 9(3):411–417CrossRefGoogle Scholar
  22. Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2011) Genome-wide expression profiling of soybean two-component system genes in soybean root and shoot tissues under dehydration stress. DNA Res 18(1):17–29PubMedCentralCrossRefPubMedGoogle Scholar
  23. Le DT, Aldrich DL, Valliyodan B, Watanabe Y, Van Ha C, Nishiyama R, Guttikonda SK, Quach TN, Gutierrez-Gonzalez JJ, Tran L-SP (2012a) Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions. PLoS One 7(9):e46487Google Scholar
  24. Le DT, Nishiyama R, Watanabe Y, Vankova R, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2012b) Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels. PLoS One 7(8):e42411PubMedCentralCrossRefPubMedGoogle Scholar
  25. Lenka SK, Katiyar A, Chinnusamy V, Bansal KC (2011) Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnol J 9(3):315–327Google Scholar
  26. Liu X, Liu S, Wu J, Zhang B, Li X, Yan Y, Li L (2013) Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. Plant Physiol Bioch 70:354–359CrossRefGoogle Scholar
  27. Makino S, Kiba T, Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Ueguchi C, Sugiyama T, Mizuno T (2000) Genes encoding pseudo-response regulators: insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol 41(6):791–803CrossRefPubMedGoogle Scholar
  28. Manavalan LP, Guttikonda SK, Tran L-SP, Nguyen HT (2009) Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50(7):1260–1276CrossRefPubMedGoogle Scholar
  29. Marcolino-Gomes J, Rodrigues FA, Fuganti-Pagliarini R, Bendix C, Nakayama TJ, Celaya B, Molinari HBC, de Oliveira MCN, Harmon FG, Nepomuceno A (2014) Diurnal oscillations of soybean circadian clock and drought responsive genes. PLoS One 9(1):e86402.Google Scholar
  30. Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara K (2012) Identification of cis-acting promoter elements in cold-and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19(1):37–49PubMedCentralCrossRefPubMedGoogle Scholar
  31. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):86–96CrossRefPubMedGoogle Scholar
  32. Mizuno T (2005) Two-component phosphorelay signal transduction systems in plants: from hormone responses to circadian rhythms. Biosci Biotechnol Biochem 69(12):2263–2276CrossRefPubMedGoogle Scholar
  33. Mizuno T, Nakamichi N (2005) Pseudo-response regulators (PRRs) or true oscillator components (TOCs). Plant Cell Physiol 46(5):677–685CrossRefPubMedGoogle Scholar
  34. Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2010) Genome-wide analysis of two-component systems and prediction of stress-responsive two-component system members in soybean. DNA Res 17(5):303–324PubMedCentralCrossRefPubMedGoogle Scholar
  35. Nakamichi N, Kusano M, Fukushima A, Kita M, Ito S, Yamashino T, Saito K, Sakakibara H, Mizuno T (2009) Transcript profiling of an Arabidopsis pseudo response regulator arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol 50(3):447–462CrossRefPubMedGoogle Scholar
  36. Nishiyama R, Le DT, Watanabe Y, Matsui A, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2012) Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS One 7(2):e32124PubMedCentralCrossRefPubMedGoogle Scholar
  37. Nishiyama R, Watanabe Y, Leyva-Gonzalez MA, Van Ha C, Fujita Y, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L (2013) Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc Natl Acad Sci U S A 110(12):4840–4845PubMedCentralCrossRefPubMedGoogle Scholar
  38. Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2013) Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot 64(2):445–458CrossRefPubMedGoogle Scholar
  39. Pareek A, Singh A, Kumar M, Kushwaha HR, Lynn AM, Singla-Pareek SL (2006) Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. Plant Physiol 142(2):380–397PubMedCentralCrossRefPubMedGoogle Scholar
  40. Ramakers C, Ruijter JM, Deprez RHL, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339(1):62–66CrossRefPubMedGoogle Scholar
  41. Ramya M, Raveendran M, Ramalingam SJ (2010) In silico analysis of drought tolerant genes in rice. Int J Biol Med Res 1(3):110–114Google Scholar
  42. Ren B, Liang Y, Deng Y, Chen Q, Zhang J, Yang X, Zuo J (2009) Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling. Cell Res 19(10):1178–1190CrossRefPubMedGoogle Scholar
  43. Sakai T, Kogiso M (2008) Soy isoflavones and immunity. J Med Invest 55(3–4):167–173CrossRefPubMedGoogle Scholar
  44. Schaller GE, Doi K, Hwang I, Kieber JJ, Khurana JP, Kurata N, Mizuno T, Pareek A, Shiu S-H, Wu P (2007) Nomenclature for two-component signaling elements of rice. Plant Physiol 143(2):555–557PubMedCentralCrossRefPubMedGoogle Scholar
  45. Schaller GE, Kieber JJ, Shiu S-H (2008) Two-component signaling elements and histidyl-aspartyl phosphorelays. The Arabidopsis Book 6:e0112Google Scholar
  46. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183CrossRefPubMedGoogle Scholar
  47. Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55(407):2343–2351CrossRefPubMedGoogle Scholar
  48. Stolf-Moreira R, Lemos EGM, Carareto-Alves L, Marcondes J, Pereira SS, Rolla AAP, Pereira RM, Neumaier N, Binneck E, Abdelnoor RV (2011) Transcriptional profiles of roots of different soybean genotypes subjected to drought stress. Plant Mol Biol Rep 29(1):19–34CrossRefGoogle Scholar
  49. Thao NP, Tran L-SP (2012) Potentials toward genetic engineering of drought-tolerant soybean. Crit Rev Biotechnol 32(4):349–362CrossRefPubMedGoogle Scholar
  50. Thao NP, Thu NBA, Hoang XLT, Ha VC, Tran LSP (2013) Differential expression analysis of a subset of drought-responsive GmNAC genes in two soybean cultivars differing in drought tolerance. Int J Mol Sci 14(12):23828–23841PubMedCentralCrossRefPubMedGoogle Scholar
  51. Thu NBA, Hoang XLT, Doan H, Nguyen T-H, Bui D, Thao NP, Tran L-SP (2014a) Differential expression analysis of a subset of GmNAC genes in shoots of two contrasting drought-responsive soybean cultivars DT51 and MTD720 under normal and drought conditions. Mol Biol Rep 41(9):5563–5569CrossRefPubMedGoogle Scholar
  52. Thu NBA, Nguyen QT, Hoang XLT, Thao NP, Tran LSP (2014b) Evaluation of drought tolerance of the Vietnamese soybean cultivars provides potential resources for soybean production and genetic engineering. Biomed Res Int 2014:809736PubMedCentralCrossRefPubMedGoogle Scholar
  53. Tran L-SP, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2007a) Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49(1):46–63CrossRefPubMedGoogle Scholar
  54. Tran LSP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007b) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104(51):20623–20628PubMedCentralCrossRefPubMedGoogle Scholar
  55. Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11(9):1743–1754PubMedCentralCrossRefPubMedGoogle Scholar
  56. Urao T, Yamaguchi-Shinozaki K, Shinozaki K (2000) Two-component systems in plant signal transduction. Trends Plant Sci 5(2):67–74CrossRefPubMedGoogle Scholar
  57. Urao T, Yamaguchi-Shinozaki K, Shinozaki K (2001) Plant histidine kinases: an emerging picture of two-component signal transduction in hormone and environmental responses. Sci Signal 2001(109):re18Google Scholar
  58. Villegas-Fernández ÁM, Krajinski F, Schlereth A, Madrid E, Rubiales D (2014) Characterization of transcription factors following expression profiling of Medicago truncatula–Botrytis spp. interactions. Plant Mol Biol Rep. 32(5):1030–1040Google Scholar
  59. Wohlbach DJ, Quirino BF, Sussman MR (2008) Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell 20(4):1101–1117PubMedCentralCrossRefPubMedGoogle Scholar
  60. Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci 10(2):88–94CrossRefPubMedGoogle Scholar
  61. Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63(5):591–608PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nguyen Binh Anh Thu
    • 1
  • Xuan Lan Thi Hoang
    • 1
  • Thuy-Dung Ho Nguyen
    • 1
  • Nguyen Phuong Thao
    • 1
    Email author
  • Lam-Son Phan Tran
    • 2
    Email author
  1. 1.School of BiotechnologyInternational University, Vietnam National University HCMCHo Chi Minh CityVietnam
  2. 2.Signaling Pathway Research UnitRIKEN Center for Sustainable Resource ScienceYokohamaJapan

Personalised recommendations