Skip to main content
Log in

A γ-Glutamylcysteine Synthetase Gene from Pyrus calleryana Is Responsive to Ions and Osmotic Stresses

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Pyrus calleryana Decne. is widely used as a pear rootstocks in Asia. Glutathione (GSH) can induce the phytochelatin synthase gene’s (PcPCS1) transcription in this plant when exposed to cadmium. This phenomenon indicated that GSH plays a vital role in protecting P. calleryana from cadmium stress. Here, we have isolated and characterized a gene encoding γ-glutamylcysteine synthetase (PcγECS), the key enzyme of GSH biosynthesis, from the leaves of P. calleryana, with the aim of expanding our knowledge of the role of GSH at the molecular level. P. calleryana plants treated with cadmium, salt, PEG6000, or mannitol responded by increasing transcription of the PcγECS gene. The response was specific for cadmium, which causes a toxicity that is thought to be mitigated through phtochelatins, and other treatments that cause damage that can be relieved by the synthesis of GSH. Feeding experiments suggested that cysteine contributed to activating the transcription of PcγECS and GSH synthesis. However, the gene’s expression was inhibited in the presence of GSH. Recombinant Escherichia coli carrying PcγECS had higher GSH synthesis levels and grew better than the control cells under cadmium, salt, or osmotic stresses. These results suggest that PcγECS may participate in responses against multiple environmental stimuli in P. calleryana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

A 600 :

The absorbance value at 600 nm

Amp:

Ampicillin

DTNB:

5,5-Dithiobis-2-nitrobenoic acid

GSH:

Glutathione

IPTG:

Isopropyl β-d-1-thiogalactopyrano-side

MEGA:

Molecular evolutionary genetics analysis

ORF:

Open reading frame

PCs:

Phytochelatins

qPCR:

Quantitative real-time PCR

RACE:

Rapid amplification of cDNA ends

γ-ECS:

γ-Glutamylcysteine synthetase (also known as glutamate-cysteine ligase)

References

  • Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–554

    Article  CAS  PubMed  Google Scholar 

  • Arisi ACM, Noctor G, Foyer CH, Jouanin L (1997) Modification of thiol contents in poplars (Populus tremula x P. alba) overexpressing enzymes involved in glutathione synthesis. Planta 203:362–372

    Article  CAS  PubMed  Google Scholar 

  • Bae MJ, Kim YS, Kim IS (2013) Transgenic rice overexpressing the Brassica juncea gamma-glutamylcysteine synthetase gene enhances tolerance to abiotic stress and improves grain yield under paddy field conditions. Mol Breeding 31:931–945

    Article  CAS  Google Scholar 

  • Bhargava P, Srivastava AK, Urmil S, Rai LC (2005) Phytochelatin plays a role in UV-B tolerance in N2-fixing cyanobacterium Anabaena doliolum. J Plant Physiol 162:1220–1225

    Article  CAS  PubMed  Google Scholar 

  • Chang YH, Li H, Cong Y, Lin J, Sheng BL (2012) Characterization and expression of a phytochelatin synthase gene in birch-leaf pear (Pyrus betulaefolia Bunge). Plant Mol Biol Report 30:1329–1337

    Article  CAS  Google Scholar 

  • Choe YH, Kim YS, Kim IS, Bae MJ, Lee EJ, Kim YH, Park HM, Yoon HS (2013) Homologous expression of gamma-glutamylcysteine synthetase increases grain yield and tolerance of transgenic rice plants to environmental stresses. J Plant Physiol 170:610–618

    Article  CAS  PubMed  Google Scholar 

  • Clemente MR, Bustos-Sanmamed P, Loscos J, James EK, Perez-Rontome C, Navascues J, Gay M, Becana M (2012) Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones. J Exp Bot 2012(63):3923–3934

    Article  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in gamma-glutamylcysteine synthetase. Plant J 16:73–78

    Article  CAS  PubMed  Google Scholar 

  • Copley SD, Dhillon JK (2002) Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biol 3:1–16

    Article  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Galant A, Preuss ML, Cameron JC, Jez JM (2011) Plant glutathione biosynthesis-diversity in biochemical regulation and reaction products. Frontiers Plant Sci 2:45

    Article  Google Scholar 

  • Hartmann T, Hönicke P, Wirtz M, Hell R, Rennenberg H, Stanislav K (2004) Regulation of sulphate assimilation by glutathione in poplars (Populus tremula x P. alba) of wild type and overexpressing gamma-glutamylcysteine synthetase in the cytosol. J Exp Bot 55:837–845

    Article  CAS  PubMed  Google Scholar 

  • Innocenti G, Pucciariello C, Le Gleuher M, Hopkins J, de Stefano M, Delledonne M, Puppo A, Baudouin E, Frendo P (2007) Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Planta 225:1597–1602

    Article  CAS  PubMed  Google Scholar 

  • Ivanova LA, Ronzhina DA, Ivanov LA, Stroukova LV, Peuke AD, Rennenberg H (2011) Over-expression of gsh1 in the cytosol affects the photosynthetic apparatus and improves the performance of transgenic poplars on heavy metal-contaminated soil. Plant Biol 13:649–659

  • Kwon YH, Stipanuk MH (2001) Cysteine regulates expression of cysteine dioxygenase and γ-glutamylcysteine synthetase in cultured rat hepatocytes. Am J Physiol Endocrinol Metab 280:E804–E815

    CAS  PubMed  Google Scholar 

  • Lee JI, Londono M, Hirschberger LL, Stipanuk MH (2004) Regulation of cysteine dioxygenase and γ-glutamylcysteine synthetase is associated with hepatic cysteine level. J Nutr Biochem 15:112–122

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Heaton ACP, Carreira L, Meagher RB (2006) Enhanced tolerance to and accumulation of mercury, but not arsenic, in plants overexpressing two enzymes required for thiol peptide synthesis. Physiol Plantarum 128:48–57

    Article  CAS  Google Scholar 

  • Li H, Cong Y, Wang HW, Sheng BL, Lin J, Chang YH (2010) Molecular cloning and expression analysis of a phytochelatin synthase gene, PcPCS1, from Pyrus calleryana Dcne. Acta Horticult 37:880–890

    CAS  Google Scholar 

  • Li H, Cong Y, Lin J, Chang YH (2014) Enhanced tolerance and accumulation of heavy metal ions by engineered Escherichia coli expressing Pyrus calleryana phytochelatin synthase. J Basic Microbiol 54:1–8

    Article  Google Scholar 

  • Liedschulte V, Wachter A, An Z, Rausch T (2010) Exploiting plants for glutathione (GSH) production: uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation. Plant Biotechnol J 8:807–820

    Article  CAS  PubMed  Google Scholar 

  • Loscos J, Matamoros MA, Becana M (2008) Ascorbate and homoglutathione metabolism in common bean nodules under stress conditions and during natural senescence. Plant Physiol 146:1282–1292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matamoros MA, Clemente MR, Sato S, Asamizu E, Tabata S, Ramos J, Moran JF, Stiller J, Gresshoff PM, Becana M (2003) Molecular analysis of the pathway for the synthesis of thiol tripeptides in the model legume Lotus japonicus. Mol Plant Microbe Interact 16:1039–1046

    Article  CAS  PubMed  Google Scholar 

  • May MJ, Leaver CJ (1995) Arabidopsis thaliana γ-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs. PNAS 91:10059–10063

    Article  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  CAS  PubMed  Google Scholar 

  • Ogawa K (2005) Glutathione-associated regulation of plant growth and stress responses. Antioxid Redox Sign 7:973–981

    Article  CAS  Google Scholar 

  • Peng LT, Wang J, Li L, An LS, Zhang JL (2004) Structure and expression analysis of the gama-glutamylcysteine synthetase gene in rice. J Plant Physiol Mol Biol 30:533–540

    CAS  Google Scholar 

  • Pucketta EE, Serapiglia MJ, DeLeona AM, Longc S, Minocha R, Smarta LB (2012) Differential expression of genes encoding phosphate transporters contributes to arsenic tolerance and accumulation in shrub willow (Salix spp.). Environ Exp Bot 75:248–257

    Article  Google Scholar 

  • Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59:143–166

    Article  CAS  PubMed  Google Scholar 

  • Sakai Y, Watanabe T, Wasaki J, Senoura T, Shinano T, Osaki M (2010) Influence of arsenic stress on synthesis and localization of low-molecular-weight thiols in Pteris vittata. Environ Pollut 158:3663–3669

    Article  CAS  PubMed  Google Scholar 

  • Schäfer HJ, Greiner S, Rausch T, Haag-Kerwer A (1997) In seedlings of the heavy metal accumulator Brassica juncea Cu2+ differentially affects transcript amounts for gamma-glutamylcysteine synthetase (gamma-ECS) and metallothionein (MT2). FEBS Lett 404:216–220

    Article  PubMed  Google Scholar 

  • Schäfer HJ, Haag-Kerwer A, Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea: evidence for Cd-induction of a putative mitochondrial γ-glutamylcysteine synthetase isoform. Plant Mol Biol 37:87–97

    Article  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • VogeliLange R, Wagner GJ (1996) Relationship between cadmium, glutathione and cadmium-binding peptides (phytochelatins) in leaves of intact tobacco seedlings. Plant Sci 114:11–18

    Article  Google Scholar 

  • White CC, Viernes H, Krejsa CM, Botta D, Kavanagh TJ (2003) Fluorescence-based microtiter plate assay for glutamate-cysteine ligase activity. Anal Biochem 318:175–180

    Article  CAS  PubMed  Google Scholar 

  • Wojcik M, Tukiendorf A (2011) Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. Biol Plant 55:125–132

    Article  CAS  Google Scholar 

  • Wu J, Qu T, Chen S, Zhao Z, An L (2009) Molecular cloning and characterization of a γ-glutamylcysteine synthetase gene from Chorispora bungeana. Protoplasma 235:27–36

    Article  CAS  PubMed  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiang CB, Warner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169–1178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Jiangsu Agriculture Science and Technology Innovation Fund of China [CX(12)5033] and the National Natural Sciences Foundation of China (Nos. 31101529, 31372051).

Conflict of Interest

All authors declare that they have no conflicts of interest for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-hong Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Han, Jl., Lin, J. et al. A γ-Glutamylcysteine Synthetase Gene from Pyrus calleryana Is Responsive to Ions and Osmotic Stresses. Plant Mol Biol Rep 33, 1088–1097 (2015). https://doi.org/10.1007/s11105-014-0821-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0821-2

Keywords