Skip to main content
Log in

A Quantitative Method to Monitor the Efficacy of Inhibitors Against the Chymotrypsin-Like Activity of the Proteasome in Tobacco Leaf Protoplasts

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Proteasome inhibitors are widely used to study the role of the ubiquitin proteasome system (UPS) in various cellular processes. These drugs have been shown to be highly effective in inhibiting the chymotrypsin-like activity of purified Arabidopsis thaliana proteasomes. However, the analysis of their efficacy in vivo is currently hampered by the absence of a simple method for the quantitative determination of proteasomal activity in plant cell extracts. Previous studies have shown that quantitative methods based on the use of fluorogenic peptides cannot be directly applied to plant homogenates, due to the presence of interfering proteases with cleavage specificities similar to that of the proteasome. To overcome this, we developed a simple and rapid fractionation procedure that efficiently separates most of the non-proteasomal chymotryptic enzymes, such that proteasome activity can be easily measured. We go on to demonstrate that in vivo treatment of tobacco protoplasts with high concentrations of three potent proteasome inhibitors can only partially suppress proteasomal chymotrypsin-like activity, resulting in the incomplete stabilisation of the protein toxin ricin A chain (RTA), a known endoplasmic reticulum-associated degradation (ERAD) substrate that normally undergoes extensive cytosolic degradation. We therefore conclude that negative results obtained using proteasome inhibitors in tobacco protoplasts and possibly other types of plant cells should be interpreted with a degree of caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams J, Behnke M, Chen S, Cruickshank AA, Dick LR, Grenier L, Klunder JM, Ma YT, Plamondon L, Stein RL (1998) Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett 8:333–338

    Article  CAS  PubMed  Google Scholar 

  • Arendt CS, Hochstrasser M (1997) Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc Natl Acad Sci U S A 94:7156–7161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Basset G, Raymond P, Malek L, Brouquisse R (2002) Changes in the expression and enzymic properties of the 20S proteasome in sugar-starved maize roots: evidence for an in vivo oxidation of the proteasome. Plant Physiol 128:1149–1162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G, Sakata E, Nickell S, Plitzko JM, Villa E, Baumeister W, Forster F (2012) Near-atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci U S A 109:14870–14875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Book AJ, Gladman NP, Lee SS, Scalf M, Smith LM, Vierstra RD (2010) Affinity purification of the Arabidopsis 26S proteasome reveals a diverse array of plant proteolytic complexes. J Biol Chem 285:25554–25569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borissenko L, Groll M (2007) The 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem Rev 107:687–717

    Article  CAS  PubMed  Google Scholar 

  • Casazza AP, Rossini S, Rosso MG, Soave C (2005) Mutational and expression analysis of ELIP1 and ELIP2 in Arabidopsis thaliana. Plant Mol Biol 58(1):41–51

    Article  CAS  PubMed  Google Scholar 

  • Cenci S, Oliva L, Cerruti F, Milan E, Bianchi G, Raule M, Mezghrani A, Pasqualetto E, Sitia R, Cascio P (2012) Protein synthesis modulates responsiveness of differentiating and malignant plasma cells to proteasome inhibitors. J Leukoc Biol 92:921–931

    Article  CAS  PubMed  Google Scholar 

  • Ceriotti A, Vitale A, Paris N, Frigerio L, Neuhaus JM, Hillmer S, Robinson DG (2003) Plant cell biology. In: Davey J, Lord JM (eds) Essential Cell Biology, Volume 1: Cell Structure, vol 1. Oxford University Press, New York, pp 133–161

    Google Scholar 

  • Cerruti F, Martano M, Petterino C, Bollo E, Morello E, Bruno R, Buracco P, Cascio P (2007) Enhanced expression of interferon-γ-induced antigen-processing machinery components in a spontaneously occurring cancer. Neoplasia 9:960–969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaddock JA, Roberts LM (1993) Mutagenesis and kinetic analysis of the active site Glu177 of ricin A-chain. Protein Eng 6(4):425–431

    Article  CAS  PubMed  Google Scholar 

  • Denecke J, Aniento F, Frigerio L, Hawes C, Hwang I, Mathur J, Neuhaus JM, Robinson DG (2012) Secretory pathway research: the more experimental systems the better. Plant Cell 24(4):1316–1326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di Cola A, Robinson C (2005) Large-scale translocation reversal within the thylakoid Tat system in vivo. J Cell Biol 171:281–289

    Article  PubMed Central  PubMed  Google Scholar 

  • Di Cola A, Frigerio L, Lord JM, Ceriotti A, Roberts LM (2001) Ricin A chain without its partner B chain is degraded after retrotranslocation from the endoplasmic reticulum to the cytosol in plant cells. Proc Natl Acad Sci U S A 98:14726–14731

    Article  PubMed Central  PubMed  Google Scholar 

  • Di Cola A, Frigerio L, Lord JM, Roberts LM, Ceriotti A (2005) Endoplasmic reticulum-associated degradation of ricin A chain has unique and plant-specific features. Plant Physiol 137:287–296

    Article  PubMed Central  PubMed  Google Scholar 

  • Dick LR, Cruikshank AA, Grenier L, Melandri FD, Nunes SL, Stein RL (1996) Mechanistic studies on the inactivation of the proteasome by lactacystin: a central role for clasto-lactacystin β-lactone. J Biol Chem 271:7273–7276

    Article  CAS  PubMed  Google Scholar 

  • Dick TP, Nussbaum AK, Deeg M, Heinemeyer W, Groll M, Schirle M, Keilholz W, Stevanovic S, Wolf DH, Huber R, Rammensee HG, Schild H (1998) Contribution of proteasomal β-subunits to the cleavage of peptide substrates analysed with yeast mutants. J Biol Chem 273:25637–25646

    Article  CAS  PubMed  Google Scholar 

  • Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995) Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268:726–731

    Article  CAS  PubMed  Google Scholar 

  • Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frigerio L, Vitale A, Lord JM, Ceriotti A, Roberts LM (1998) Free ricin A chain, proricin, and native toxin have different cellular fates when expressed in tobacco protoplasts. J Biol Chem 273:14194–14199

    Article  CAS  PubMed  Google Scholar 

  • Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386:463–471

    Article  CAS  PubMed  Google Scholar 

  • Gu C, Kolodziejek I, Misas-Villamil J, Shindo T, Colby T, Verdoes M, Richau KH, Schmidt J, Overkleeft HS, van der Hoorn RA (2010) Proteasome activity profiling: a simple, robust and versatile method revealing subunit-selective inhibitors and cytoplasmic, defense-induced proteasome activities. Plant J 62:160–170

    Article  CAS  PubMed  Google Scholar 

  • Hamel LP, Benchabane M, Nicole MC, Major IT, Morency MJ, Pelletier G, Beaudoin N, Sheen J, Seguin A (2011) Stress-responsive mitogen-activated protein kinases interact with the EAR motif of a poplar zinc finger protein and mediate its degradation through the 26S proteasome. Plant Physiol 157(3):1379–1393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH (1997) The active sites of the eukaryotic 20S proteasome and their involvement in subunit precursor processing. J Biol Chem 272:25200–25209

    Article  CAS  PubMed  Google Scholar 

  • Hua Z, Vierstra RD (2011) The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol 62:299–334

    Article  CAS  PubMed  Google Scholar 

  • Ju HJ, Ye CM, Verchot-Lubicz J (2008) Mutational analysis of PVX TGBp3 links subcellular accumulation and protein turnover. Virology 375(1):103–117

    Article  CAS  PubMed  Google Scholar 

  • Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180

    Article  CAS  PubMed  Google Scholar 

  • Kim DY, Scalf M, Smith LM, Vierstra RD (2013) Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis. Plant Cell 25(5):1523–1540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8:739–758

    Article  CAS  PubMed  Google Scholar 

  • Kisselev AF, Goldberg AL (2005) Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. Methods Enzymol 398:364–378

    Article  CAS  PubMed  Google Scholar 

  • Kisselev AF, Akopian TN, Woo KM, Goldberg AL (1999) The sizes of peptides generated from protein by mammalian 20 and 26S proteasomes: implications for understanding the degradative mechanism and antigen presentation. J Biol Chem 274:3363–3371

    Article  CAS  PubMed  Google Scholar 

  • Kisselev AF, Callard A, Goldberg AL (2006) The importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with protein substrate. J Biol Chem 281:8582–8590

    Article  CAS  PubMed  Google Scholar 

  • Kisselev AF, van der Linden WA, Overkleeft HS (2012) Proteasome inhibitors: an expanding army attacking a unique target. Chem Biol 19:99–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kolodziejek I, van der Hoorn RA (2010) Mining the active proteome in plant science and biotechnology. Curr Opin Biotechnol 21(2):225–233

    Article  CAS  PubMed  Google Scholar 

  • Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482:186–191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lasker K, Forster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, Beck F, Aebersold R, Sali A, Baumeister W (2012) Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci U S A 109:1380–1387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee DH, Goldberg AL (1996) Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J Biol Chem 271:27280–27284

    Article  CAS  PubMed  Google Scholar 

  • Ling Q, Huang W, Baldwin A, Jarvis P (2012) Chloroplast biogenesis is regulated by direct action of the ubiquitin-proteasome system. Science 338(6107):655–659

    Article  CAS  PubMed  Google Scholar 

  • Liu JX, Howell SH (2010) Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell 22:2930–2942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu CW, Li X, Thompson D, Wooding K, Chang TL, Tang Z, Yu H, Thomas PJ, DeMartino GN (2006) ATP binding and ATP hydrolysis play distinct roles in the function of the 26S proteasome. Mol Cell 24:39–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maliga P, Sz-Breznovits A, Marton L (1973) Streptomycin-resistant plants from callus culture of haploid tobacco. Nat New Biol 244:29–30

    Article  CAS  PubMed  Google Scholar 

  • Marshall RS, Jolliffe NA, Ceriotti A, Snowden CJ, Lord JM, Frigerio L, Roberts LM (2008) The role of CDC48 in the retrotranslocation of non-ubiquitinated toxin substrates in plant cells. J Biol Chem 283:15869–15877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM (1999) Epoxomycin, a potent and selective proteasome inhibitor, exhibits in vivo anti-inflammatory activity. Proc Natl Acad Sci U S A 96:10403–10408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pedrazzini E, Giovinazzo G, Bollini R, Ceriotti A, Vitale A (1994) Binding of BiP to an assembly-defective protein in plant cells. Plant J 5:103–110

    Article  CAS  Google Scholar 

  • Pedrazzini E, Giovinazzo G, Bielli A, de Virgilio M, Frigerio L, Pesca M, Faoro F, Bollini R, Ceriotti A, Vitale A (1997) Protein quality control along the route to the plant vacuole. Plant Cell 9:1869–1880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richardson PG, Mitsiades C, Hideshima T, Anderson KC (2006) Bortezomib: proteasome inhibition as an effective anticancer therapy. Annu Rev Med 57:33–47

    Article  CAS  PubMed  Google Scholar 

  • Rock KL, Gramm C, Rothstein L, Clark K, Stein RL, Dick LR, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cellular proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771

    Article  CAS  PubMed  Google Scholar 

  • Russell JD, Scalf M, Book AJ, Ladror DT, Vierstra RD, Smith LM, Coon JJ (2013) Characterization and quantification of intact 26S proteasome proteins by real-time measurement of intrinsic fluorescence prior to top-down mass spectrometry. PLoS One 8(3):e58157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salmon J, Ramos J, Callis J (2008) Degradation of the auxin response factor ARF1. Plant J 54:118–128

    Article  CAS  PubMed  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  • Smith DM, Kafri G, Cheng Y, Ng D, Walz T, Goldberg AL (2005) ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol Cell 20:687–698

    Article  CAS  PubMed  Google Scholar 

  • Tabe LM, Wardley-Richardson T, Ceriotti A, Aryan A, McNabb W, Moore A, Higgins TJV (1995) A biotechnological approach to improving the nutritive value of alfalfa. J Anim Sci 73:2752–2759

    CAS  PubMed  Google Scholar 

  • Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N, Tsukihara T (2002) The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure 10:609–618

    Article  CAS  PubMed  Google Scholar 

  • Verdoes M, Florea BI, Menendez-Benito V, Maynard CJ, Witte MD, van der Linden WA, van den Nieuwendijk AM, Hofmann T, Berkers CR, van Leeuwen FW, Groothuis TA, Leeuwenburgh MA, Ovaa H, Neefjes JJ, Filippov DV, van der Marel GA, Dantuma NP, Overkleeft HS (2006) A fluorescent broad-spectrum proteasome inhibitor for labeling proteasomes in vitro and in vivo. Chem Biol 13(11):1217–1226

    Article  CAS  PubMed  Google Scholar 

  • Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397

    Article  CAS  PubMed  Google Scholar 

  • Yang P, Fu H, Walker JM, Papa CM, Smalle J, Ju YM, Vierstra RD (2004) Purification of the Arabidopsis 26S proteasome: biochemical and molecular analyses revealed the presence of multiple isoforms. J Biol Chem 279:6401–6413

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Spencer Whitney (Australian National University, Canberra, Australia) for providing the antiserum against tobacco Rubisco, Anna Paola Casazza (Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano, Italy) for providing the anti-LHCB1 antibodies, Herman S. Overkleeft (Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands) for providing the fluorescent probe MV151 and for helpful suggestions, Richard Vierstra and David Gemperline (University of Wisconsin, Madison, USA) for critical reading of the manuscript. This work was supported by a grant of the Ricerca Locale dell’Università degli Studi di Torino to P.C., by the Program FILAGRO - Strategie innovative e sostenibili per la filiera agroalimentare (Accordo quadro CNR-Regione Lombardia), and through a UK Biotechnology and Biological Sciences Research Council studentship awarded through L.M.R. for R.S.M.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paolo Cascio or Aldo Ceriotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cascio, P., Cerruti, F., Marshall, R.S. et al. A Quantitative Method to Monitor the Efficacy of Inhibitors Against the Chymotrypsin-Like Activity of the Proteasome in Tobacco Leaf Protoplasts. Plant Mol Biol Rep 33, 829–840 (2015). https://doi.org/10.1007/s11105-014-0793-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0793-2

Keywords

Navigation