Abstract
Many applications of plant genetic engineering require tight control of transgene expression to a particular organ, tissue or developmental stage, particularly when off-target expression causes deleterious effects. Most studies have relied on tissue-specific and developmentally regulated promoters to confer the desired transgene expression pattern via transcriptional control. However, the process to identify promoters conferring required expression patterns is slow and expensive, with no certainty of success. Therefore, we investigated the practicality of post-transcriptional control of transgene expression patterns in plants, triggered by binding of endogenous small RNA sequences. Target sequences of several small RNAs, inserted 3′ of a luciferase reporter, altered transgene expression in patterns consistent with developmental abundance of the corresponding small RNAs in sugarcane. Incorporating the target sequences of miR167 or a leaf-specific small RNA selectively reduced reporter expression in leaves by more than 90 % on average, whereas incorporating the miR160-3p target sequence selectively reduced reporter expression in roots by 75 % on average across immature transgenic lines. We anticipate that the strategy should be broadly applicable in plants.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Amendola M, Giustacchini A, Gentner B, Naldini L (2013) A double-switch vector system positively regulates transgene expression by endogenous microRNA expression (miR-ON vector). Mol Ther 21:934–946. doi:10.1038/mt.2013.12
Banks IR, Zhang Y, Wiggins BE, Heck GR, Ivashuta S (2012) RNA decoys: an emerging component of plant regulatory networks? Plant Signal Behav 7:1188–1193. doi:10.4161/psb.21299
Basnayake SW, Moyle R, Birch RG (2011) Embryogenic callus proliferation and regeneration conditions for genetic transformation of diverse sugarcane cultivars. Plant Cell Rep 30:439–448. doi:10.1007/s00299-010-0927-4
Bottino MC et al. (2013) High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. PLoS One 8. doi: 10.1371/journal.pone.0059423
Brown BD, Naldini L (2009) Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 10:578–585. doi:10.1038/nrg2628
Calvino M, Bruggmann R, Messing J (2011) Characterization of the small RNA component of the transcriptome from grain and sweet sorghum stems. BMC Genomics 12:356. doi:10.1186/1471-2164-12-356
Carlsbecker A et al (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321. doi:10.1038/nature08977
Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44. doi:10.1146/annurev.cellbio.042308.113417
Chen X (2010) Small RNAs—secrets and surprises of the genome. Plant J 61:941–958. doi:10.1111/j.1365-313X.2009.04089.x
Chen CJ, Liu Q, Zhang YC, Qu LH, Chen YQ, Gautheret D (2011) Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus. RNA Biol 8:538–547
Chou T-C, Moyle RL (2014) Synthetic versions of firefly luciferase and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. BMC Plant Biol Rev 14:92. doi:10.1186/1471-2229-14-92
Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689
Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442. doi:10.1105/tpc.110.082784
Eason JR, Ryan DJ, Watson LM, Hedderley D, Christey MC, Braun RH, Coupe SA (2005) Suppression of the cysteine protease, aleurain, delays floret senescence in Brassica oleracea. Plant Mol Biol 57:645–657. doi:10.1007/s11103-005-0999-7
Felippes FF, Wang JW, Weigel D (2012) MIGS: miRNA-induced gene silencing. Plant J 70:541–547. doi:10.1111/j.1365-313X.2011.04896.x
Ferreira TH, Gentile A, Vilela RD, Costa GG, Dias LI, Endres L, Menossi M (2012) microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.). PLoS One 7:e46703
Franco-Zorrilla JM et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037. doi:10.1038/ng2079
Gapper NE et al (2005) Senescence-associated down-regulation of 1-aminocyclopropane-1-carboxylate (ACC) oxidase delays harvest-induced senescence in broccoli. Funct Plant Biol 32:891–901. doi:10.1071/Fp05076
Gentile A et al (2013) Effects of drought on the microtranscriptome of field-grown sugarcane plants. Planta 237:783–798. doi:10.1007/s00425-012-1795-7
Gentner B, Schira G, Giustacchini A, Amendola M, Brown BD, Ponzoni M, Naldini L (2009) Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods 6:63–66. doi:10.1038/nmeth.1277
Hofig KP, Moyle RL, Putterill J, Walter C (2003) Expression analysis of four Pinus radiata male cone promoters in the heterologous host Arabidopsis. Planta 217:858–867. doi:10.1007/s00425-003-1057-9
Jackson MA, Sternes PR, Mudge SR, Graham MW, Birch RG (2014) Design rules for efficient expression in plants. Plant Biotechnol J. doi:10.1111/pbi.12197
Karali M et al (2011) MicroRNA-restricted transgene expression in the retina. PLoS One 6:e22166. doi:10.1371/journal.pone.0022166
Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157. doi:10.1093/nar/gkq1027
Miyashima S, Koi S, Hashimoto T, Nakajima K (2011) Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development 138:2303–2313. doi:10.1242/dev.060491
Miyashima S et al (2013) A comprehensive expression analysis of the Arabidopsis MICRORNA165/6 gene family during embryogenesis reveals a conserved role in meristem specification and a non-cell-autonomous function. Plant Cell Physiol 54:375–384. doi:10.1093/pcp/pcs188
Moyle RL, Birch RG (2013a) Diversity of sequences and expression patterns among alleles of a sugarcane loading stem gene. Theor Appl Genet 126:1775–1782. doi:10.1007/s00122-013-2091-z
Moyle RL, Birch RG (2013b) Sugarcane loading stem gene promoters drive transgene expression preferentially in the stem. Plant Mol Biol 82:51–58. doi:10.1007/s11103-013-0034-3
Mudge SR, Basnayake SW, Moyle RL, Osabe K, Graham MW, Morgan TE, Birch RG (2013) Mature-stem expression of a silencing-resistant sucrose isomerase gene drives isomaltulose accumulation to high levels in sugarcane. Plant Biotechnol J 11:502–509. doi:10.1111/pbi.12038
Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428. doi:10.1038/nbt1255
Ortiz-Morea FA, Vicentini R, Silva GFF, Silva EM, Carrer H, Rodrigues AP, Nogueira FTS (2013) Global analysis of the sugarcane microtranscriptome reveals a unique composition of small RNAs associated with axillary bud outgrowth. J Exp Bot 64:2307–2320. doi:10.1093/Jxb/Ert089
Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol Plant 40:1–22. doi:10.1079/IVP2003477
Ruwe H, Schmitz-Linneweber C (2012) Short non-coding RNA fragments accumulating in chloroplasts: footprints of RNA binding proteins? Nucleic Acids Res 40:3106–3116. doi:10.1093/nar/gkr1138
Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133. doi:10.1105/tpc.105.039834
Thiebaut F et al (2012) Computational identification and analysis of novel sugarcane microRNAs. BMC Genomics 13:290. doi:10.1186/1471-2164-13-290
Van Dillewijn C (1952) Botany of sugarcane. Chronica Botanica Co, Waltham
Winichayakul S, Moyle RL, Coupe SA, Davies KM, Farnden KJF (2004a) Analysis of the asparagus (Asparagus officinalis) asparagine synthetase gene promoter identifies evolutionarily conserved cis-regulatory elements that mediate Suc-repression. Funct Plant Biol 31:63–72. doi:10.1071/Fp03179
Winichayakul S, Moyle RL, Ryan DJ, Farnden KJF, Davies KM, Coupe SA (2004b) Distinct cis-elements in the Asparagus officinalis asparagine synthetase promoter respond to carbohydrate and senescence signals. Funct Plant Biol 31:573–582
Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547. doi:10.1242/dev.02521
Zanca AS, Vicentini R, Ortiz-Morea FA, Del Bem LE, da Silva MJ, Vincentz M, Nogueira FT (2010) Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane. BMC Plant Biol 10:260. doi:10.1186/1471-2229-10-260
Zhang C et al (2012) Control of pollen-mediated gene flow in transgenic trees. Plant Physiol 159:1319–1334. doi:10.1104/pp. 112.197228
Zhao YT, Wang M, Fu SX, Yang WC, Qi CK, Wang XJ (2012) Small RNA profiling in two Brassica napus cultivars identifies microRNAs with oil production- and development-correlated expression and new small RNA classes. Plant Physiol 158:813–823. doi:10.1104/pp. 111.187666
Acknowledgments
The authors acknowledge the technical assistance of Lynette Huang. This research was supported through a collaboration between CSR Sugar Limited (Sucrogen) and The University of Queensland under the Australian Research Council’s linkage scheme.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Moyle, R.L., Sternes, P.R. & Birch, R.G. Incorporating Target Sequences of Developmentally Regulated Small RNAs Into Transgenes to Enhance Tissue Specificity of Expression in Plants. Plant Mol Biol Rep 33, 505–511 (2015). https://doi.org/10.1007/s11105-014-0765-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11105-014-0765-6


