Plant Molecular Biology Reporter

, Volume 33, Issue 2, pp 326–333 | Cite as

Identification and Characterization of the FT/TFL1 Gene Family in the Biofuel Plant Jatropha curcas

  • Chaoqiong Li
  • Li Luo
  • Qiantang Fu
  • Longjian Niu
  • Zeng-Fu Xu
Brief Communication

Abstract

The transition from vegetative to reproductive growth is one of the most important developmental steps made by flowering plants. At the molecular level, the genes in the FLOWERING LOCUS T (FT)/TERMINAL FLOWER 1 (TFL1) family, which encode proteins with high similarity to phosphatidyl ethanolamine-binding proteins, function as flowering promoters or repressors. Here, we isolated six members of the FT/TFL1 family from Jatropha curcas, a plant with considerable potential for various uses including biofuels. All members of this gene family display a common exon-intron organization. Sequence comparisons and phylogenetic analysis with homologous genes from other plant species group Jatropha FT/TFL1 genes into three major subfamilies: one into the FT-like, three into the TFL1-like, and two into the MOTHER OF FT AND TFL1 (MFT)-like subfamilies. Expression analysis indicates differences in the expression patterns of these six genes at the temporal and spatial levels. JcFT, the Jatropha FT homolog, is primarily expressed in the reproductive organs. JcTFL1a and JcTFL1c, two genes in the TFL1-like subfamily, are mainly expressed in the roots of juvenile plants, whereas JcTFL1b transcripts are abundantly accumulated in the fruits. In addition, two JcMFT genes are primarily expressed in the fruits. The differential expression of the FT/TFL1 gene family in Jatropha suggests that this gene family plays multifaceted roles in plant growth and development.

Keywords

Physic nut FLOWERING LOCUS T TERMINAL FLOWER 1 MOTHER OF FT AND TFL1 Phosphatidyl ethanolamine-binding protein 

Abbreviations

AP1

APETALA 1

ATC

ARABIDOPSIS THALIANA CENTRORADIALIS HOMOLOGUE

BFT

BROTHER OF FT AND TFL1

FUL

FRUITFULL

FT

FLOWERING LOCUS T

MFT

MOTHER OF FT AND TFL1

PEBP

Phosphatidyl ethanolamine-binding protein

qRT-PCR

Quantitative reverse transcriptase-polymerase chain reaction

SOC1

SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1

TF

Transcription factor

TFL1

TERMINAL FLOWER 1

TSF

TWIN SISTER OF FT

Supplementary material

11105_2014_747_MOESM1_ESM.docx (16 kb)
Table S1(DOCX 15 kb)
11105_2014_747_MOESM2_ESM.docx (16 kb)
Table S2(DOCX 15 kb)

References

  1. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309(5737):1052–1056CrossRefPubMedGoogle Scholar
  2. Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25(3):605–614CrossRefPubMedCentralPubMedGoogle Scholar
  3. Akashi K (2012) Jatropha research: a new frontier for biofuel development. Plant Biotechnol 29(2):121CrossRefGoogle Scholar
  4. Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275(5296):80–83CrossRefPubMedGoogle Scholar
  5. Carmona MJ, Calonje M, Martínez-Zapater JM (2007) The FT/TFL1 gene family in grapevine. Plant Mol Biol 63(5):637–650CrossRefPubMedGoogle Scholar
  6. Chardon F, Damerval C (2005) Phylogenomic analysis of the PEBP gene family in cereals. J Mol Evol 61(5):579–590CrossRefPubMedGoogle Scholar
  7. Chautard H, Jacquet M, Schoentgen F, Bureaud N, Bénédetti H (2004) Tfs1p, a member of the PEBP family, inhibits the Ira2p but not the Ira1p Ras GTPase-activating protein in Saccharomyces cerevisiae. Eukaryot Cell 3(2):459–470CrossRefPubMedCentralPubMedGoogle Scholar
  8. Chen M-S, Wang G-J, Wang R-L, Wang J, Song S-Q, Xu Z-F (2011) Analysis of expressed sequence tags from biodiesel plant Jatropha curcas embryos at different developmental stages. Plant Sci 181(6):696–700. doi:10.1016/j.plantsci.2011.03.004 CrossRefPubMedGoogle Scholar
  9. Chua N-H, Ye J, Geng Y-F, Zhang B (2013) Flowering modification in Jatropha and other plants. Publication No. WO 2013/130016 A1Google Scholar
  10. D’Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, Torti S, Coupland G, Périlleux C (2011) Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J 65(6):972–979CrossRefPubMedGoogle Scholar
  11. Danilevskaya ON, Meng X, Hou Z, Ananiev EV, Simmons CR (2008) A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol 146(1):250–264CrossRefPubMedCentralPubMedGoogle Scholar
  12. Ding L-W, Sun Q-Y, Wang Z-Y, Sun Y-B, Xu Z-F (2008) Using silica particles to isolate total RNA from plant tissues recalcitrant to extraction in guanidine thiocyanate. Anal Biochem 374(2):426–428CrossRefPubMedGoogle Scholar
  13. Doyle JJ, Doyle JL, Brown A (1990) A chloroplast-DNA phylogeny of the wild perennial relatives of soybean (Glycine subgenus Glycine): congruence with morphological and crossing groups. Evolution 44(2):371–389CrossRefGoogle Scholar
  14. Ghosh A, Chikara J, Chaudhary D, Prakash AR, Boricha G, Zala A (2010) Paclobutrazol arrests vegetative growth and unveils unexpressed yield potential of Jatropha curcas. J Plant Growth Regul 29(3):307–315CrossRefGoogle Scholar
  15. Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci U S A 102(21):7748–7753CrossRefPubMedCentralPubMedGoogle Scholar
  16. Harig L, Beinecke FA, Oltmanns J, Muth J, Müller O, Rüping B, Twyman RM, Fischer R, Prüfer D, Noll GA (2012) Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. Plant J 72(6):908–921PubMedGoogle Scholar
  17. Hedman H, Källman T, Lagercrantz U (2009) Early evolution of the MFT-like gene family in plants. Plant Mol Biol 70(4):359–369CrossRefPubMedGoogle Scholar
  18. Hirakawa H, Tsuchimoto S, Sakai H, Nakayama S, Fujishiro T, Kishida Y, Kohara M, Watanabe A, Yamada M, Aizu T (2012) Upgraded genomic information of Jatropha curcas L. Plant Biotechnol 29:123–130CrossRefGoogle Scholar
  19. Huang NC, Jane WN, Chen J, Yu TS (2012) Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis. Plant J 72(2):175–184CrossRefPubMedGoogle Scholar
  20. Igasaki T, Watanabe Y, Nishiguchi M, Kotoda N (2008) The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar. Plant Cell Physiol 49(3):291–300CrossRefPubMedGoogle Scholar
  21. Imamura T, Nakatsuka T, Higuchi A, Nishihara M, Takahashi H (2011) The gentian orthologs of the FT/TFL1 gene family control floral initiation in Gentiana. Plant Cell Physiol 52(6):1031–1041CrossRefPubMedGoogle Scholar
  22. Jaeger KE, Pullen N, Lamzin S, Morris RJ, Wigge PA (2013) Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell 25(3):820–833CrossRefPubMedCentralPubMedGoogle Scholar
  23. Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, Lascoux M, Lagercrantz U (2011) Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol 156(4):1967–1977CrossRefPubMedCentralPubMedGoogle Scholar
  24. Khalil H, Aprilia N, Bhat A, Jawaid M, Paridah M, Rudi D (2013) A Jatropha biomass as renewable materials for biocomposites and its applications. Renew Sust Energ Rev 22:667–685CrossRefGoogle Scholar
  25. Kinoshita T, Ono N, Hayashi Y, Morimoto S, Nakamura S, Soda M, Kato Y, Ohnishi M, Nakano T, Inoue S-i (2011) FLOWERING LOCUS T regulates stomatal opening. Curr Biol 21(14):1232–1238CrossRefPubMedGoogle Scholar
  26. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286(5446):1960CrossRefPubMedGoogle Scholar
  27. Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S-i, Igasaki T, Nishiguchi M, Yano K, Shimizu T (2010) Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh.). Plant Cell Physiol 51(4):561–575CrossRefPubMedGoogle Scholar
  28. Lee R, Baldwin S, Kenel F, McCallum J, Macknight R (2013) FLOWERING LOCUS T genes control onion bulb formation and flowering. Nat Commun 4. doi:10.1038/ncomms3884
  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCTmethod. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  30. Matsoukas IG, Massiah AJ, Thomas B (2012) Florigenic and antiflorigenic signaling in plants. Plant Cell Physiol 53(11):1827–1842CrossRefPubMedGoogle Scholar
  31. Mimida N, Goto K, Kobayashi Y, Araki T, Ahn JH, Weigel D, Murata M, Motoyoshi F, Sakamoto W (2001) Functional divergence of the TFL1‐like gene family in Arabidopsis revealed by characterization of a novel homologue. Genes Cells 6(4):327–336CrossRefPubMedGoogle Scholar
  32. Mimida N, Kotoda N, Ueda T, Igarashi M, Hatsuyama Y, Iwanami H, Moriya S, Abe K (2009) Four TFL1/CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus × domestica Borkh.). Plant Cell Physiol 50(2):394–412CrossRefPubMedGoogle Scholar
  33. Navarro C, Abelenda JA, Cruz-Oró E, Cuéllar CA, Tamaki S, Silva J, Shimamoto K, Prat S (2011) Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478(7367):119–122CrossRefPubMedGoogle Scholar
  34. Ong H, Mahlia T, Masjuki H, Norhasyima R (2011) Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: a review. Renew Sust Energy Rev 15(8):3501–3515CrossRefGoogle Scholar
  35. Pan B-Z, Xu Z-F (2011) Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas. J Plant Growth Regul 30(2):166–174. doi:10.1007/s00344-010-9179-3 CrossRefGoogle Scholar
  36. Pillitteri LJ, Lovatt CJ, Walling LL (2004) Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in citrus. Plant Physiol 135(3):1540–1551CrossRefPubMedCentralPubMedGoogle Scholar
  37. Pin P, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ 35(10):1742–1755CrossRefPubMedGoogle Scholar
  38. Posé D, Yant L, Schmid M (2012) The end of innocence: flowering networks explode in complexity. Curr Opin Plant Biol 15(1):45–50CrossRefPubMedGoogle Scholar
  39. Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, Coen ES, Bradley DJ (1998) A common mechanism controls the life cycle and architecture of plants. Development 125(9):1609–1615PubMedGoogle Scholar
  40. Ryu JY, Park C-M, Seo PJ (2011) The floral repressor BROTHER OF FT AND TFL1 (BFT) modulates flowering initiation under high salinity in Arabidopsis. Mol Cells 32(3):295–303CrossRefPubMedCentralPubMedGoogle Scholar
  41. Ryu JY, Lee H-J, Seo PJ, Jung J-H, Ahn JH, Park C-M (2013) The Arabidopsis floral repressor BFT delays flowering by competing with FT for FD binding under high salinity. Mol Plant. doi:10.1093/mp/sst1114 PubMedGoogle Scholar
  42. Sato H, Heang D, Sassa H, Koba T (2009) Identification and characterization of FT/TFL1 gene family in cucumber. Breed Sci 59(1):3–11CrossRefGoogle Scholar
  43. Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18(1):65–76CrossRefPubMedCentralPubMedGoogle Scholar
  44. Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3(9):877–892CrossRefPubMedCentralPubMedGoogle Scholar
  45. Smart M, Roden LC (2013) Initiation of flowering in Protea compacta × Protea neriifolia hybrid ‘Carnival’ coincides with expression of the FLOWERING LOCUS T homologue. Plant Mol Biol Rep. doi:10.1007/s11105-013-0657-1 Google Scholar
  46. Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68(12):2013–2037CrossRefPubMedGoogle Scholar
  47. Tsaftaris A, Pasentsis K, Argiriou A (2013) Cloning and characterization of FLOWERING LOCUS T-like genes from the perennial geophyte saffron crocus (Crocus sativus). Plant Mol Biol Rep 31(6):1558–1568CrossRefGoogle Scholar
  48. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309(5737):1056CrossRefPubMedGoogle Scholar
  49. Xi W, Liu C, Hou X, Yu H (2010) MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22(6):1733–1748CrossRefPubMedCentralPubMedGoogle Scholar
  50. Xu F, Rong X, Huang X, Cheng S (2012) Recent advances of FLOWERING LOCUS T gene in higher plants. Int J Mol Sci 13(3):3773–3781CrossRefPubMedCentralPubMedGoogle Scholar
  51. Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T (2005) TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol 46(8):1175–1189CrossRefPubMedGoogle Scholar
  52. Yoo SY, Kardailsky I, Lee JS, Weigel D, Ahn JH (2004) Acceleration of flowering by overexpression of MFT (MOTHER OF FT AND TFL1). Mol Cells 17(1):95–101PubMedGoogle Scholar
  53. Yoo SJ, Chung KS, Jung SH, Yoo SY, Lee JS, Ahn JH (2010) BROTHER OF FT AND TFL1 (BFT) has TFL1‐like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis. Plant J 63(2):241–253CrossRefPubMedGoogle Scholar
  54. Zhang L, He L-L, Fu Q-T, Xu Z-F (2013) Selection of reliable reference genes for gene expression studies in the biofuel plant Jatropha curcas using real-time quantitative PCR. Int J Mol Sci 14(12):24338–24354CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Chaoqiong Li
    • 1
    • 2
  • Li Luo
    • 3
  • Qiantang Fu
    • 1
  • Longjian Niu
    • 1
    • 4
  • Zeng-Fu Xu
    • 1
  1. 1.Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Gene Engineering of the Ministry of Education, and State Key Laboratory for Biocontrol, School of Life SciencesSun Yat-sen UniversityGuangzhouChina
  4. 4.School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations