Skip to main content
Log in

Depiction of Grapevine Phenology by Gene Expression Information and a Test of its Workability in Guiding Fertilization

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The development of precision agriculture calls for the emergence of new approaches to more accurately depict plant phenology. Gene expression data can predict and indicate plant growth state and phenological events accurately at the molecular level, and thus could be developed as a novel means of describing crop phenophase. Here, we analyzed the expression profiles of nine genes involved in grapevine flower and berry development, and screened the most informative genes for use in depicting grapevine phenology. Of the genes tested, VvAP1, VvAP3, VvFLC were found to be best suited to depicting grapevine phenology. The feasibility and efficiency of using the genetically depicted grapevine phenology was further tested in fertilization trials. The results showed that fertilization could be used to decrease flower and berry drop ratio and increase berry weight and size to a greater extent when taking into account variations in the activity of specific genes. Thus, phenologies predicted by a knowledge of gene activity can definitely be formed, and can be regarded as “genetic phenology”. A first grapevine genetic phenology profile was completed, and used to pre-depict grapevine phenophases to accurately guide the timing of grapevine farming activities and in the pre-diagnosis of the influence of some stresses on grapevines. Genetic phenology could be developed into a simple, low-cost and highly effective technology for accurate prediction of traditional crop phenology at the molecular level that is well suited to precision agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arpaia M, Robinson PW, Liu X, Mickelbart MV, Witney GW (1996) Development of a phenological model for California ‘Hass’ avocado. In: Proceedings of 1996 Avocado Research Symposium. California Avocado Society and University of California, Riverside, CA, pp 7–11

  • Boss PK, Thomas MR (2000) Tendrils, inflorescences and fruitfulness: a molecular perspective. Aust J Grape Wine Res 6(2):168–174

    Article  Google Scholar 

  • Boyes DC, Zayed AM, Ascenzi R, Mccaskill AJ, Hoffman NE, Davis KR, Gorlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burgess KS, Etterson JR, Galloway LF (2007) Artificial selection shifts flowering phenology and other correlated traits in an autotetraploid herb. Heredity 99:641–48

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed Central  PubMed  Google Scholar 

  • Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Seguin B, Daux V, Le Roy LE (2004) Grape ripening as a past climate indicator. Nature 432:289–290

    Article  CAS  PubMed  Google Scholar 

  • Corbesier LC, Vincent S, Jang F, Fornara QZ, Fan C, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  CAS  PubMed  Google Scholar 

  • Costantini L, Battilana J, Lamaj P, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol 8:38

    Article  PubMed Central  PubMed  Google Scholar 

  • Cotton PA (2003) Avian migration phenology and global climate change. Proc Natl Acad Sci USA 100:2219–12222

    Article  Google Scholar 

  • Fiona T, Nicholas HB (2010) Temperate flowering phenology. J Exp Bot 61:2855–2862

    Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691

    Article  CAS  PubMed  Google Scholar 

  • He PC (1998) Grapevine. Chinese Agricultural, Beijing, pp 181–183

  • Huete AR, Didan K, Shimabukuro YE (2006) Amazon rainforests green-up with sunlight in dry season. Geophys Res Lett 3, L06405

    Google Scholar 

  • Ïrfan Ç, Nalan T (2004) Studies on some phenological and pomological traits of Mulberries grown in Edremit and Gevas regions. Tarm Bilimleri Dergisi (J Agric Sci) 14:127–131

    Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Fabbro CD, Alaux M, Gaspero GD, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Clainche IL, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave PG, Valle FME, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P, French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Jeffree EP (1960) Some long-term means from the Phenological reports (1891-1948) of the Royal Meteorological Society. Q J R Meteorol Soc 86:95–103

    Article  Google Scholar 

  • Jones GV, Davis RE (2000) Climatic influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am J Enol Vitic 51:249–261

    Google Scholar 

  • Kazuharu O, Akio F, Akio H, Makmom AA, Muhamad A (1995) Morphological and phenological characteristics of leaf development of Durio zibethinus Murray (Bombacaceae). J Plant Res 108:511–515

    Article  Google Scholar 

  • Keenan DJ (2007) Grape harvest dates are poor indicators of summer warmth. Theor Appl Climatol 87:255–256

    Article  Google Scholar 

  • Kong QS (2004) Ampeliography. Chinese Agricultural Science and Technology, Beijing, pp 116–118

  • Lavee S, May P (1997) Dormancy of grapevine buds-facts and speculation. Aust J Grape Wine Res 3:31–46

    Article  CAS  Google Scholar 

  • Lebon G, Duchêne E, Brun O, Clément C (2005) Phenology of flowering and strarch accumulation in grape (Vitis vinifera L.) cuttings and vines. Ann Bot 95:943–948

    Article  CAS  PubMed  Google Scholar 

  • Li JJ (2011) Cloning and expression analysis of TFL1 and SOC1 homolog genes in Rosaceae(D). Thesis, Huazhong Agricultural University

  • Lu JG, Getz EA, Miska E, Alvarez-Saavedra J, Lamb D, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MircroRNA expression profiles classify human cancer. Nature 435:834–838. doi:10.1038/nature03702

    Google Scholar 

  • Marigo G, Pautou G (1998) Phenology, Growth and ecophysiological characteristics of Fallopia sachalinensis. J Veg Sci 9:379–386

    Article  Google Scholar 

  • Meier N, Rutishauser T, Luterbacher J, Pfister C, Wanner H (2007) Grape harvest dates as a proxy for Swiss April to August temperature reconstructions back to AD 1480. Geophys Res Lett 34, L20705

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahasa R, Alm-Kubler K, Bissolli P, Braslavska´ O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Slogdal, Defila C, Donnely A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, van Vliet, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11(5):949–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michaels SD, Amasino RM (2001) Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13(4):935–941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qin QP, Yin T, Chen JW, Xie M, Zhang SL (2006) APETALA3/DEFICIENS and PISTILLATA/GLOBOSA genes with floral development of plant. Chin J Cell Biol 28:571–576

    CAS  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, Lohmann JU (2003) Dissection of floral induction pathways using global expression analysis. Development 130:6001–6012

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Chang Biol 12:343–351

    Article  Google Scholar 

  • Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11(3):445–458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheldon CC, Finnegan EJ, Rouse DT, Tadege M, Bagnall DJ, Helliwell CA, Peacock WJ, Dennis ES (2000) The control of flowering by vernalization. Curr Opin Plant Biol 3(5):418–422

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39:519–525

    Article  CAS  PubMed  Google Scholar 

  • Sousa TA, Oliveira MT, Pereira JM (2006) Physiological indicators of plant water status of irrigated and non-irrigated grapevines grown in a low rainfall area of Portgal. Plant Soil 282:127–134

    Article  CAS  Google Scholar 

  • Sparks TH, Carey PD (1995) The responses of species to climate over two centuries: an analysis of the Marsham phenological record, 1736–1947. J Ecol 83:321–329

    Article  Google Scholar 

  • Swanepoel JJ, Villiers FS, Pouget R (1990) Predicting the date of budburst in grapevines. S Afr J Enol Vitic 11:46–49

    Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J, Malacame G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Cyzerski R, Moretto M, Gutin N, Stefanin M, Chen Y, Segala C, Kavenport C, Demattѐ L, Mraz A, Battilana J, Stormo K, Costa F, Tao QZ, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepolele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Ven de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequences of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang C, Liu H, Fang JG, Song CN, Cao X, Yang G, Zhang Z (2010) Cloning and expression analysis of APETALA2 gene from grapevine (Vitis vinifera) based on EST database. J Fruit Sci 27(2):207–212

    Google Scholar 

  • Wang C, Shangguan LF, Nicholas KK, Wang X, Han J, Song CN, Fang JG (2011) Characterization of microRNAs identified in a table grapevine cultivar with validation of computationally predicted grapevine miRNAs by miR-RACE. PLoS ONE 6:e21259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang LL, Liang HM, Pang JL, Zhu MY (2004) Regulation Network and Biological Roles of LEAFY in Arabidopsis thaliana in Floral Development. Hereditas 26(1):137–142

    CAS  PubMed  Google Scholar 

  • Yang G, Yue LX, Wang C, Tan HH, Cao X, Fang JG, Zhang Z (2010) Expression of nine important floral genes during flower differentiation and development of the summer buds of grapevine cv. Fujiminori. J Fruit Sci 27(6):892–897

    CAS  Google Scholar 

  • Zhang NQ, Wang MH, Wang N (2002) Precsion agriculture – a worldwide overview. Comput Electron Agric 36:113–132

    Article  Google Scholar 

  • Zhang Y, Liu QL (2003) Proceedings on molecular mechanism of plant flower development. Chin Bull Bot 20(5):589–601

    Google Scholar 

  • Zheng XY (2010) Cloning, expression and promoter analysis of flowering LOCUS T (FT) homologue in Malus ×Domestica(D). Thesis, Nanjing Agricultural University

  • Zong CW (2007) Cloning and expression of flower development related genes from grape (Vits vinifera ×V. Labrusca)(D). Dissertation, Nanjing Agricultural University

Download references

Acknowledgments

This work was supported by a Project Funded by the Natural Science Foundation of China (NSFC) (No. 31301759), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Chinese Postdoctoral Science Foundation (2013M531373), Postdoctoral Science Foundation of Jiangsu Province(1301116C), the Nanjing Agricultural University Youth Science and Technology Innovation Fund (KJ2013013) and the Special Fund for Independent innovation of Agricultural Science and Technology in Jiangsu province (SCX(11)2044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinggui Fang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

The expression levels of five genes related to nitrogen metabolism in control and fertilizer treatments. (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Han, J., Shangguan, L. et al. Depiction of Grapevine Phenology by Gene Expression Information and a Test of its Workability in Guiding Fertilization. Plant Mol Biol Rep 32, 1070–1084 (2014). https://doi.org/10.1007/s11105-014-0711-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0711-7

Keywords

Navigation