Plant Molecular Biology Reporter

, Volume 32, Issue 3, pp 750–760 | Cite as

Transcriptome versus Genomic Microsatellite Markers: Highly Informative Multiplexes for Genotyping Abies alba Mill. and Congeneric Species

  • Dragos Postolache
  • Cristina Leonarduzzi
  • Andrea Piotti
  • Ilaria Spanu
  • Anne Roig
  • Bruno Fady
  • Anna Roschanski
  • Sascha Liepelt
  • Giovanni Giuseppe Vendramin
Original Paper

Abstract

The availability of high-resolution, cost-effective polymorphic genetic markers displaying Mendelian inheritance is a prerequisite for fine-scale population genetic analyses as well as informed conservation and sustainable management. Silver fir (Abies alba Mill.) is a widespread European species of economic and ecological importance for which genetic markers are needed but difficult to develop, as in most conifer species. In this work, we introduce two sets of new multiplexed transcriptome-derived expressed sequence tag microsatellites (EST-simple sequence repeats (SSRs)) which we compare to a set of multiplexed genomic microsatellites (gSSRs). For both marker types, transferability was tested in 17 congeneric taxa. A total of 16 new EST-SSRs and two new gSSRs were developed. The EST-SSR multiplexes produced easily scorable amplification patterns that allow rapid and cost-effective genotyping at low-error rates, and include loci that display very low null allele frequencies. Generally, EST-SSRs displayed lower polymorphism and frequency of null alleles, but higher genetic differentiation among populations than gSSRs. Preliminary tests revealed that the EST-SSR markers are highly transferable and polymorphic across Abies species. This study also confirmed that SSRs can be successfully developed using next-generation sequencing technology also in large genome species such as conifers.

Keywords

EST-SSRs Genomic SSRs Multiplex PCR Diversity Silver fir 

Supplementary material

11105_2013_688_MOESM1_ESM.doc (54 kb)
Table S1(DOC 54 kb)

References

  1. Aussenac G (2002) Ecology and ecophysiology of circum-Mediterranean firs in the context of climate change. Ann For Sci 59:823–832CrossRefGoogle Scholar
  2. Barthe S, Gugerli F, Barkley NA, Maggia L, Cardi C, Scotti I (2012) Always look on both sides: phylogenetic information conveyed by simple sequence repeat allele sequences. PLoS ONE 7:e40699PubMedCentralPubMedCrossRefGoogle Scholar
  3. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41:D36–D42PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631PubMedCrossRefGoogle Scholar
  5. Chauchard S, Caicaillet C, Guibal F (2007) Pattern of land-use abandonment control tree-recruitment and forest dynamics in Mediterranean mountains. Ecosystems 10:936–948CrossRefGoogle Scholar
  6. Chauchard S, Beilhe F, Denis N, Carcaillet C (2010) An increase in the upper tree-limit of silver fir (Abies alba Mill.) in the Alps since the mid-20th century: a land-use change phenomenon. For Ecol Manage 259:1406–1415CrossRefGoogle Scholar
  7. Cheddadi R, Birks HJB, Tarroso P, Liepelt S, Gömöry D, Dullinger S, Meier ES, Hülber K, Maiorano L, Laborde H (2013) Revisiting tree-migration rates: Abies alba (Mill.), a case study. Veg Hist Archaeobot. doi:10.1007/s00334-013-0404-4 Google Scholar
  8. Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113PubMedCrossRefGoogle Scholar
  9. Cremer E, Liepelt S, Sebastiani F, Buonamici A, Michalczyk IM, Ziegenhagen B, Vendramin GG (2006) Identification and characterization of nuclear microsatellite loci in Abies alba Mill. Mol Ecol Notes 6:374–376CrossRefGoogle Scholar
  10. Cremer E, Ziegenhagen B, Schulerowitz K, Mengel C, Donges K, Bialozyt R, Hussendörfer E, Liepelt S (2012) Local seed dispersal in European silver fir (Abies alba Mill.): lessons learned from a seed trap experiment. Trees 26:987–996CrossRefGoogle Scholar
  11. Duran C, Appleby N, Edwards D, Batley J (2009) Molecular genetic markers: discovery, applications, data storage and visualisation. Curr Bioinform 4:16–27CrossRefGoogle Scholar
  12. Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  13. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  14. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedCentralPubMedGoogle Scholar
  15. Fan L, Zhang MY, Liu QZ, Li LT, Song Y, Wang LF, Zhang SL, Wu J (2013) Transferability of newly developed pear SSR markers to other Rosaceae species. Plant Mol Biol Rep. doi:10.1007/s11105-013-0586-z PubMedCentralPubMedGoogle Scholar
  16. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993PubMedCentralPubMedCrossRefGoogle Scholar
  17. Gerber S, Chabrier P, Kremer A (2003) FAMOZ: a software for parentage analysis using dominant, codominant and uniparentally inherited markers. Mol Ecol Notes 3:479–481CrossRefGoogle Scholar
  18. Gillet E, Hattemer HH (1989) Genetic analysis of isoenzyme phenotypes using single tree progenies. Heredity 63:135–141CrossRefGoogle Scholar
  19. Gömöry D, Paule L, Krajmerová D, Romšáková I, Longauer R (2012) Admixture of genetic lineages of different glacial origin: a case study of Abies alba Mill. in the Carpathians. Plant Syst Evol 298:703–712CrossRefGoogle Scholar
  20. Guehl JM, Aussenac G, Bouachrine J, Zimmermann R, Pennes JM, Ferhi A, Grieu P (1991) Sensitivity of leaf gas-exchange to atmospheric drought, soil drought, and water-use efficiency in some Mediterranean Abies species. Can J For Res 10:1507–1515CrossRefGoogle Scholar
  21. Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Petit RJ (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611PubMedCrossRefGoogle Scholar
  22. Hansen OK, Vendramin GG, Sebastiani F, Edwards KJ (2005) Development of microsatellite markers in Abies nordmanniana (Stev.) Spach and cross-species amplification in the Abies genus. Mol Ecol Notes 5:784–787CrossRefGoogle Scholar
  23. Hansen OK, Nielsen UB, Kongevej H (2008) Crossing success in Abies nordmanniana following artificial pollination with a pollen mixture of A. nordmanniana and A. alba. Silvae Genet 57:70–75Google Scholar
  24. Jakobsson M, Edge MD, Rosenberg NA (2013) The relationship between F ST and the frequency of the most frequent allele. Genetics 193:515–528PubMedCentralPubMedCrossRefGoogle Scholar
  25. Jamieson A, Taylor SCS (1997) Comparisons of three probability formulae for parentage exclusion. Anim Genet 28:397–400PubMedCrossRefGoogle Scholar
  26. Kalinowski ST (2005) HP-Rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  27. Keenan K, McGinnity P, Cross TF, Crozier WW, Prodohl PA (2013) DiveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788CrossRefGoogle Scholar
  28. Kim K, Ratcliffe S, French B, Liu L, Sappington T (2008) Utility of EST-derived SSRs as population genetic markers in a beetle. J Hered 99:112–124PubMedCrossRefGoogle Scholar
  29. Konnert M, Bergmann F (1995) The geographical distribution of genetic variation of Silver fir (Abies alba, Pinaceae) in relation to its migration history. Plant Syst Evol 196:19–30CrossRefGoogle Scholar
  30. Kovach A, Wegrzyn JL, Parra G, Holt C, Bruening GE, Loopstra CA, Hartigan J, Yandell M, Langley CH, Korf I, Neale DB (2010) The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics 11:420PubMedCentralPubMedCrossRefGoogle Scholar
  31. Lefèvre F, Koskela J, Hubert J, Kraigher H, Longauer R, Olrik DC, Schüler S, Bozzano M, Alizoti P, Bakys R, Baldwin C, Ballian D, Black-Samuelsson S, Bednarova D, Bordács S, Collin E, De Cuyper B, De Vries SMG, Eysteinsson T, Frydl J, Haverkamp M, Ivankovic M, Konrad H, Koziol C, Maaten T, Piano EN, Oztürk H, Pandeva ID, Parnuta G, Pilipovič A, Postolache D, Ryan C, Steffenrem A, Varela MC, Vessella F, Volosyanchuk RT, Westergren M, Wolter F, Yrjänä L, Zarinda I (2013) Dynamic conservation of forest genetic resources in 33 European countries. Conserv Biol 27:373–384PubMedCrossRefGoogle Scholar
  32. Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates gene flow among refugia. Proc Natl Acad Sci U S A 99:14590–14594PubMedCentralPubMedCrossRefGoogle Scholar
  33. Liepelt S, Cheddadi R, de Beaulieu JL, Fady B, Gömöry D, Hussendörfer E, Konnert M, Litt T, Longauer R, Terhürne-Berson R, Ziegenhagen B (2009) Postglacial range expansion and its genetic imprints in Abies alba (Mill.) - A synthesis from palaeobotanic and genetic data. Rev Palaeobot Palynol 153:139–149CrossRefGoogle Scholar
  34. Linares J, Camarero JJ (2012) Growth patterns and sensitivity to climate predict silver fir decline in the Spanish Pyrenees. Eur J For Res 131:1001–1012CrossRefGoogle Scholar
  35. Macias M, Andreu L, Bosch O, Camarero JJ, Gutiérrez E (2006) Increasing aridity is enhancing silver fir Abies alba (Mill.) water stress in its south-western distribution limit. Clim Chang 79:289–313CrossRefGoogle Scholar
  36. Maiorano L, Cheddadi R, Zimmermann NE, Pellissier L, Petitpierre B, Pottier J, Laborde H, Hurdu BI, Pearman PB, Psomas A, Singarayer JS, Broennimann O, Vittoz P, Dubuis A, Edwards ME, Binney HA, Guisan A (2013) Building the niche through time: using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Glob Ecol Biogeogr 22:302–317CrossRefGoogle Scholar
  37. Malausa T, Gilles A, Meglécz E, Blanquart H, Duthoy S, Costedoat C, Dubut V, Pech N, Castagnone-Sereno P, Délye C, Feau N, Frey P, Gauthier P, Guillemaud T, Hazard L, Le Corre V, Lung-Escarmant B, Malé PJ, Ferreira S, Martin JF (2011) High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Mol Ecol Resour 11:638–644PubMedCrossRefGoogle Scholar
  38. Narum SR, Hess JE (2011) Comparison of FST outlier tests for SNP loci under selection. Mol Ecol Resour 11:184–194PubMedCrossRefGoogle Scholar
  39. Oddou-Muratorio S, Vendramin GG, Buiteveld J, Fady B (2009) Population estimators or progeny tests: what is the best method to assess null allele frequencies at SSR loci? Conserv Genet 10:1343–1347CrossRefGoogle Scholar
  40. Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA (2010) Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 11:180PubMedCentralPubMedCrossRefGoogle Scholar
  41. Peakall R, Smouse P (2012) GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research— an update. Bioinformatics 19:2537–2539CrossRefGoogle Scholar
  42. Pérez-Figueroa A, Garcia-Pereira MJ, Saura M, Rolan-Alvarez E, Caballero A (2010) Comparing three different methods to detect selective loci using dominant markers. J Evol Biol 23:2267–2276PubMedCrossRefGoogle Scholar
  43. Petit RJ, Deguilloux MF, Chat J, Grivet D, Garnier-Géré P, Vendramin GG (2005) Removing the bias due to different numbers of repeats when comparing measures of diversity at microsatellite loci. Mol Ecol 14:885–890PubMedCrossRefGoogle Scholar
  44. Pfeiffer A, Olivieri AM, Morgante M (1997) Identification and characterization of microsatellites in Norway spruce (Picea abies K.). Genome 40:411–419PubMedCrossRefGoogle Scholar
  45. Pinzauti F, Sebastiani F, Budde KB, Fady B, Gonzalez-Martinez SC, Vendramin GG (2012) Nuclear microsatellite for Pinus pinea (Pinaceae), a genetically depauperate tree and their transferability to P. halepensis. Am J Bot 99:362–365CrossRefGoogle Scholar
  46. Piotti A, Leonardi S, Buiteveld J, Geburek T, Gerber S, Kramer K, Vettori C, Vendramin GG (2012) Comparison of pollen gene flow among four European beech (Fagus sylvatica L.) populations characterized by different management regimes. Heredity 108:322–331PubMedCentralPubMedCrossRefGoogle Scholar
  47. Piovani P, Leonardi S, Piotti A, Menozzi P (2010) Conservation genetics of small relic populations of Silver fir (Abies alba Mill.) in northern Apennines. Plant Biosyst 144:683–691CrossRefGoogle Scholar
  48. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  49. Roschanski AM, Fady B, Ziegenhagen B, Liepelt S (2013) Annotation and re-sequencing of genes from de novo transcriptome assembly of Abies alba (Pinaceae). Appl Plant Sci 1:1200179Google Scholar
  50. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedCrossRefGoogle Scholar
  51. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  52. Sagnard F, Barberot C, Fady B (2002) Structure of genetic diversity in Abies alba Mill. from south-western Alps: multivariate analysis of adaptive and non-adaptive traits for conservation in France. Forest Ecol Manage 157:175–189CrossRefGoogle Scholar
  53. Schoebel CN, Brodbeck S, Buehler D, Cornejo C, Gajurel J, Hartikainen H, Keller D, Leys M, Říčanová A, Segelbacher G, Werth S, Csencsics D (2013) Lessons learned from microsatellite development for non-model organisms using 454 pyrosequencing. J Evolu Biol 26:600–611CrossRefGoogle Scholar
  54. Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nature Biotechnol 18:233–234CrossRefGoogle Scholar
  55. Sebastiani F, Pinzauti F, Kujala ST, Gonzalez-Martinez SC, Vendramin GG (2012) Novel polymorphic nuclear microsatellite markers for Pinus sylvestris L. Conserv Genet Resour 4:231–234CrossRefGoogle Scholar
  56. Soto-Cerda BJ, Cloutier S (2013) Outlier loci and selection signatures of simple sequence repeats (SSRs) in flax (Linum usitatissimum L.). Plant Mol Biol Rep. doi:10.1007/s11105-013-0568-1 PubMedCentralPubMedGoogle Scholar
  57. Sullivan AR, Lind JF, McCleary TS, Romero-Severson J, Gailing O (2013) Development and characterization of genomic and gene-based microsatellite markers in North American red oak species. Plant Mol Biol Rep 31:231–239CrossRefGoogle Scholar
  58. Tarazi R, Sebben AM, Mollinari M, Vencovsky R (2010) Mendelian inheritance, linkage and linkage disequilibrium in microsatellite loci of Copaifera langsdorffii Desf. Conserv Genet Resour 2:201–204CrossRefGoogle Scholar
  59. The UniProt Consortium (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40:D71–D75PubMedCentralCrossRefGoogle Scholar
  60. Ueno S, Moriguchi Y, Uchiyama K, Ujino-Ihara T, Futamura N, Sakurai T, Shinohara K, Tsumura Y (2012) A second generation framework for the analysis of microsatellites in expressed sequence tags and the development of EST-SSR markers for a conifer, Cryptomeria japonica. BMC Genomics 13:136PubMedCentralPubMedCrossRefGoogle Scholar
  61. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55PubMedCrossRefGoogle Scholar
  62. Vendramin GG, Degen B, Petit RJ, Anzidei M, Madaghiele A, Ziegenhagen B (1999) High level of variation at Abies alba chloroplast microsatellite loci in Europe. Mol Ecol 8:1117–1126CrossRefGoogle Scholar
  63. Wagner S, Gerber S, Petit RJ (2012) Two highly informative dinucleotide SSR multiplexes for the conifer Larix decidua (European larch). Mol Ecol Resour 12:717–725PubMedCrossRefGoogle Scholar
  64. Wolf H (2003) EUFORGEN technical guidelines for genetic conservation and use for silver fir (Abies alba). International Plant Genetic Resources Institute. Rome, ItalyGoogle Scholar
  65. Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208PubMedCrossRefGoogle Scholar
  66. Zeng S, Xiao G, Guo J, Fei Z, Xu Y, Roe BA, Wang Y (2010) Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.) Maxim. BMC Genomics 11:94PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Dragos Postolache
    • 1
    • 2
  • Cristina Leonarduzzi
    • 3
  • Andrea Piotti
    • 2
    • 3
  • Ilaria Spanu
    • 2
  • Anne Roig
    • 4
  • Bruno Fady
    • 4
  • Anna Roschanski
    • 5
  • Sascha Liepelt
    • 5
  • Giovanni Giuseppe Vendramin
    • 2
  1. 1.Scuola Superiore Sant’AnnaPisaItaly
  2. 2.Plant Genetics InstituteNational Research Council (CNR)Sesto Fiorentino (Firenze)Italy
  3. 3.Department of BiosciencesUniversity of ParmaParmaItaly
  4. 4.INRA, UR629 Ecologie des Forêts Méditerranéennes (URFM)AvignonFrance
  5. 5.Faculty of Biology, Conservation BiologyUniversity of MarburgMarburgGermany

Personalised recommendations