Skip to main content
Log in

Characterisation of an SKn-type Dehydrin Promoter from Wheat and Its Responsiveness to Various Abiotic and Biotic Stresses

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Dehydrins (DHNs; late embryogenesis abundant D11 family) are a family of intrinsically unstructured plant proteins that accumulate in seed embryos or in vegetative tissues in response to environmental stresses. To elucidate the regulatory mechanisms of wheat-derived DHNs under these stresses, we isolated and characterised the full-length cDNA, genomic and promoter sequences of dehydrin wzy1-2 (SK3-type) from the wheat (Triticum aestivum L.) Zhengyin 1. We then analysed the responsiveness of the wzy1-2 promoter to various abiotic and biotic stresses. The sequence analysis indicated that the gene is 1,255 bp long and contains one 103-bp intron, which is inserted in the nucleotide sequence encoding the S-motif and characterised by a GT–AG border. The promoter contains several potential stress-related cis-acting regulatory elements, including ABA-, dehydration-, low temperature-, methyl jasmonate (MeJA)-, gibberellin (GA)-, salicylic acid (SA)-, and defence and stress-responsive elements. The quantitative PCR analysis demonstrated that the transcript accumulation occurred in response to osmotic stress, cold, MeJA, abscisic acid (ABA), GA and SA treatments. The histochemical analysis of GUS expression in wheat transgenic calli demonstrated that wzy1-2 promoter activity could be upregulated by osmotic stress, ABA, GA or SA treatment. Quantitative fluorometric GUS assays further demonstrated that one SA-responsive element was located between −59 and −39 bp and that one GA-responsive element was situated between −39 and +107 bp. Combined, these results indicate that multiple cis-acting elements are involved in the induction of the wzy1-2 gene, which implies that different cis-acting elements interact in stress response cross-talk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ali-Benali MA, Alary R, Joudrier P, Gautier MF (2005) Comparative expression of five Lea genes during wheat seed development and in response to abiotic stresses by real-time quantitative RT-PCR. Biochim Biophys Acta-Gene Struct Expres 1730:56–65

    Article  CAS  Google Scholar 

  • Allagulova CR, Gimalov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and putative functions. Biochem Mosc 68:945–951

    Article  CAS  Google Scholar 

  • An YQ, Lin L (2011) Transcriptional regulatory programs underlying barley germination and regulatory functions of gibberellin and abscisic acid. BMC Plant Biol 11:105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arguello-Astorga GR, Herrera-Estrella LR (1996) Ancestral multipartite units in light-responsive plant promoters have structural features correlating with specific phototransduction pathways. Plant Physiol 112:1151–1166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bae EK, Lee H, Lee JS, Noh EW (2009) Differential expression of a poplar SK2-type dehydrin gene in response to various stresses. BMB Rep 42:439–443

    Article  CAS  PubMed  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Bassett CL, Wisniewski ME, Artlip TS, Richart G, Norelli JL, Farrell RE (2009) Comparative expression and transcript initiation of three peach dehydrin genes. Planta 230:107–118

    Article  CAS  PubMed  Google Scholar 

  • Bringloe DH, Dyer TA, Gray JC (1995) Developmental, circadian and light regulation of wheat ferredoxin gene expression. Plant Mol Biol 27:293–306

    Article  CAS  PubMed  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pages M, Masmoudi K (2007a) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026

    Article  CAS  PubMed  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Irar S, Pages M, Masmoudi K (2007b) Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Sci 172:20–28

    Article  CAS  Google Scholar 

  • Brini F, Yamamoto A, Jlaiel L, Takeda S, Hobo T, Dinh HQ, Hattori T, Masmoudi K, Hanin M (2011) Pleiotropic effects of the wheat dehydrin DHN-5 on stress responses in Arabidopsis. Plant Cell Physiol 52:676–688

    Article  CAS  PubMed  Google Scholar 

  • Broglie R, Coruzzi G, Lamppa G, Keith B, Chua NH (1983) Structural analysis of nuclear genes coding for the precursor to the small subunit of wheat ribulose-1, 5-bisphosphate carboxylase. Nat Biotechnol 1:55–61

    Article  Google Scholar 

  • Busk PK, Jensen AB, Pagès M (1997) Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J 11:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Meyerowitz EM (1986) Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene. Proc Natl Acad Sci U S A 83:1408–1412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi DW, Zhu B, Close T (1999) The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor Appl Genet 98:1234–1247

    Article  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Danyluk J, Houde M, Rassart É, Sarhan F (1994) Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant gramineae species. FEBS Lett 344:20–24

    Article  CAS  PubMed  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Datukishvili N, Gabriadze I, Kutateladze T, Karseladze M, Vishnepolsky B (2010) Comparative evaluation of DNA extraction methods for food crops. Int J Food Sci Tech 45:1316–1320

    Article  CAS  Google Scholar 

  • Deckert J, Gresshoff PM (1993) Soybean cyclin gene structure and expression during nodulation. EMBL-EBI website. http://www.ebi.ac.uk/Tools/dbfetch/emblfetch?Z26331. Accessed 21 Sept 1993

  • Diaz-De-Leon F, Klotz KL, Lagrimini LM (1993) Nucleotide sequence of the tobacco (Nicotiana tabacum) anionic peroxidase gene. Plant Physiol 101:1117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dunn MA, White AJ, Vural S, Hughes MA (1998) Identification of promoter elements in a low-temperature-responsive gene (blt4. 9) from barley (Hordeum vulgare L.). Plant Mol Biol 38:551–564

    Article  CAS  PubMed  Google Scholar 

  • El-Shehawi AM, Elseehy MM, Hedgcoth C (2011) Isolation and sequence analysis of wheat tissue-specific cDNAs by differential display. Plant Mol Biol Rep 29:135–148

    Article  CAS  Google Scholar 

  • Feldbrügge M, Sprenger M, Dinkelbach M, Yazaki K, Harter K, Weisshaar B (1994) Functional analysis of a light-responsive plant bZIP transcriptional regulator. Plant Cell 6:1607–1621

    Article  PubMed Central  PubMed  Google Scholar 

  • Ganeshan S, Vitamvas P, Fowler DB, Chibbar RN (2008) Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen. J Exp Bot 59:2393–2402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grossi M, Gulli M, Cattivelli L (1995) Characterization of two barley genes that respond rapidly to dehydration stress. Plant Sci 105:71–80

    Article  CAS  Google Scholar 

  • Guy C, Niemi KJ, Brambl R (1985) Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci U S A 82:3673–3677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hennig J, Dewey RE, Cutt JR, Klessig DF (1993) Pathogen, salicylic acid and developmental dependent expression of a β-1,3-glucanase/GUS gene fusion in transgenic tobacco plants. Plant J 4:481–493

    Article  CAS  PubMed  Google Scholar 

  • Horvath DP (1993) Cloning, characterization and regulation of cold-induced genes from Arabidopsis thaliana. PhD thesis, Michigan State University

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Nishio T (2004) Efficiency of PCR-RF-SSCP marker production in Brassica oleracea using Brassica EST sequences. Euphytica 137:233–242

    Article  CAS  Google Scholar 

  • Ito M, Ichinose Y, Kato H, Shiraishi T, Yamada T (1997) Molecular evolution and functional relevance of the chalcone synthase genes of pea. Mol Gen Genet 255:28–37

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Bremont JF, Maruri-López I, Ochoa-Alfaro AE, Delgado-Sánchez P, Bravo J, Rodríguez-Kessler M (2012) LEA gene introns: is the intron of dehydrin genes a characteristic of the serine-segment? Plant Mol Biol Rep 31:128–140

    Article  Google Scholar 

  • Koag MC, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ (2009) The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol 150:1503–1514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lei T, Feng H, Sun X, Dai QL, Zhang F, Liang HG, Lin HH (2010) The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. Plant Growth Regul 60:35–42

    Article  CAS  Google Scholar 

  • Litts J, Erdman M, Huang N, Karrer E, Noueiry A, Quatrano R, Rodriguez R (1992) Nucleotide sequence of the rice (Oryza sativa) Em protein gene (Emp1). Plant Mol Biol 19:335–337

    Article  CAS  PubMed  Google Scholar 

  • Liu L (2011) Expression analysis of dehydrin in 4 genotypes wheat under soil drought stress. Master thesis, Northweat A&F university

  • Liu Y, Wang L, Xing X, Sun L, Pan J, Kong X, Zhang M, Li D (2013) ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol 54:944–959

    Article  CAS  PubMed  Google Scholar 

  • Lopez CG, Banowetz GM, Peterson CJ, Kronstad WE (2003) Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci 43:577–582

    Article  CAS  Google Scholar 

  • Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara K (2012) Identification of cis-acting promoter elements in cold-and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19:37–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miles AJ, Potts SC, Willingham NM, Raines CA, Lloyd JC (1993) A light-and developmentally-regulated DNA-binding interaction is common to the upstream sequences of the wheat Calvin cycle bisphosphatase genes. Plant Mol Biol 22:507–516

    Article  CAS  PubMed  Google Scholar 

  • Naoumkina M, Dixon RA (2011) Characterization of the mannan synthase promoter from guar (Cyamopsis tetragonoloba). Plant Cell Rep 30:997–1006

    Article  CAS  PubMed  Google Scholar 

  • Nash J, Luehrsen KR, Walbot V (1990) Bronze-2 gene of maize: reconstruction of a wild-type allele and analysis of transcription and splicing. Plant Cell 2:1039–1049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nordin K, Vahala T, Palva ET (1993) Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 21:641–653

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Alfaro A, Rodríguez-Kessler M, Pérez-Morales M, Delgado-Sánchez P, Cuevas-Velazquez C, Gómez-Anduro G, Jiménez-Bremont J (2012) Functional characterization of an acidic SK3 dehydrin isolated from an Opuntiastreptacantha cDNA library. Planta 235:565–578

    Article  CAS  PubMed  Google Scholar 

  • Pastuglia M, Roby D, Dumas C, Cock JM (1997) Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. Plant Cell 9:49–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rahman LNRLN, Chen LCL, Nazim SNS, Bamm BVV, Yaish MWYMW, Moffatt BAMBA, Dutcher JRDJR, Harauz GHG (2010) Interactions of intrinsically disordered Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes—synergistic effects of lipid composition and temperature on secondary structure. Biochem Cell Biol 88:791–807

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Trelles F, Tarrío R, Ayala FJ (2006) Origins and evolution of spliceosomal introns. Annu Rev Genet 40:47–76

    Article  PubMed  Google Scholar 

  • Rorat T (2006) Plant dehydrins—tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  CAS  PubMed  Google Scholar 

  • Rorat T, Szabala BM, Grygorowicz WJ, Wojtowicz B, Yin Z, Rey P (2006) Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta 224:205–221

    Article  CAS  PubMed  Google Scholar 

  • Rouster J, Leah R, Mundy J, Cameron-Mills V (2003) Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J 11:513–523

    Article  Google Scholar 

  • Roy SW, Irimia M (2009) Mystery of intron gain: new data and new models. Trends Genet 25(2):67–73

    Article  CAS  PubMed  Google Scholar 

  • Sommer H, Saedler H (1986) Structure of the chalcone synthase gene of Antirrhinum majus. Mol Gen Genet 202:429–434

    Article  CAS  Google Scholar 

  • Straub PF, Shen Q, Ho TD (1994) Structure and promoter analysis of an ABA- and stress-regulated barley gene, HVA1. Plant Mol Biol 26:617–630

    Article  CAS  PubMed  Google Scholar 

  • Takaiwa F, Oono K, Wing D, Kato A (1991) Sequence of three members and expression of a new major subfamily of glutelin genes from rice. Plant Mol Biol 17:875–885

    Article  CAS  PubMed  Google Scholar 

  • Takumi S, Koike A, Nakata M, Kume S, Ohno R, Nakamura C (2003) Cold-specific and light-stimulated expression of a wheat (Triticum aestivum L.) Cor gene Wcor15 encoding a chloroplast-targeted protein. J Exp Bot 54:2265–2274

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50:571–599

    Article  CAS  Google Scholar 

  • Utsugi S, Sakamoto W, Murata M, Motoyoshi F (1998) Arabidopsis thaliana vegetative storage protein (VSP) genes: gene organization and tissue-specific expression. Plant Mol Biol 38:565–576

    Article  CAS  PubMed  Google Scholar 

  • Vaseva II, Grigorova BS, Simova-Stoilova LP, Demirevska KN, Feller U (2010) Abscisic acid and late embryogenesis abundant protein profile changes in winter wheat under progressive drought stress. Plant Biol 12:698–707

    Article  CAS  PubMed  Google Scholar 

  • Vornam B, Gailing O, Derory J, Plomion C, Kremer A, Finkeldey R (2011) Characterisation and natural variation of a dehydrin gene in Quercus petraea (Matt.) Liebl. Plant Biol 13:881–887

    Article  CAS  PubMed  Google Scholar 

  • Vorst O, Dam F, Oosterhoff-Teertstra R, Smeekens S, Weisbeek P (1990) Tissue-specific expression directed by an Arabidopsis thaliana pre-ferredoxin promoter in transgenic tobacco plants. Plant Mol Biol 14:491–499

    Article  CAS  PubMed  Google Scholar 

  • White AJ, Dunn MA, Brown K, Hughes MA (1994) Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley. J Exp Bot 45:1885–1892

    Article  CAS  Google Scholar 

  • Xiao H, Nassuth A (2006) Stress- and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V. riparia and V. vinifera. Plant Cell Rep 25:968–977

    Article  CAS  PubMed  Google Scholar 

  • Xing Y (2011) The analysis of dehydrin gene wzy2 expression in different genotype wheat under drought stress. Master thesis, Northweat A&F university

  • Xu J, Zhang YX, Wei W, Han L, Guan ZQ, Wang Z, Chai TY (2008) BjDHNs confer heavy-metal tolerance in plants. Mol Biotechnol 38:91–98

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol 101:1119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yang N (2008) Analysis of the stress-inducible promoter of TdDHN8/WCOR410 from wheat using transient expression assays. Master thesis, University of Adelaide

  • Yang Y, He M, Zhu Z, Li S, Xu Y, Zhang C, Singer SD, Wang Y (2012) Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol 12:140–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Li J, Yu F, Cong L, Wang L, Burkard G, Chai T (2006) Cloning and expression analysis of SKn-type dehydrin gene from bean in response to heavy metals. Mol Biotechnol 32:205–217

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Dai S, Zhu N, Booy A, Simons B, Yi S, Chen S (2012a) Methyl jasmonate responsive proteins in Brassica napus guard cells revealed by iTRAQ-based quantitative proteomics. J Proteome Res 11:3728–3742

    Article  CAS  PubMed  Google Scholar 

  • Zhu WN, Zhang LS, Zhang N, Xing Y, Jiang B (2012b) The clone of wheat dehydrin-like gene wzy2 and its functional analysis in Pichia pastoris. Afr J Biotechnol 11:9549–9558

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. C1302) and National Basic Scientific Research Foundation of China (Grant No. Z109021302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linsheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, W., Zhang, D., Lu, X. et al. Characterisation of an SKn-type Dehydrin Promoter from Wheat and Its Responsiveness to Various Abiotic and Biotic Stresses. Plant Mol Biol Rep 32, 664–678 (2014). https://doi.org/10.1007/s11105-013-0681-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0681-1

Keywords

Navigation