Plant Molecular Biology Reporter

, Volume 32, Issue 2, pp 566–583 | Cite as

Transcriptomic Profiling of Apple in Response to Inoculation with a Pathogen (Penicillium expansum) and a Non-pathogen (Penicillium digitatum)

  • L. Vilanova
  • M. Wisniewski
  • J. Norelli
  • I. Viñas
  • R. Torres
  • J. Usall
  • J. Phillips
  • S. Droby
  • N. Teixidó
Original Paper

Abstract

Penicillium expansum, the causal agent of blue mould of pome fruits, is a major postharvest pathogen in all producing countries. To develop a better understanding of disease resistance mechanisms in apples, a comprehensive transcriptional analysis of apple gene expression in response to a compatible (P. expansum) and non-host (Penicillium digitatum) pathogen was conducted using an apple microarray of approximately 40,000 probes. The resulting data provide further evidence that apples inoculated with P. expansum exhibit significant upregulation of defense-related genes and genes involved in detoxification of reactive oxygen species. In contrast, apples inoculated with P. digitatum, a non-host pathogen, exhibited upregulation of genes involved in phenylpropanoid metabolism. To confirm the accuracy of the expression profiles obtained with the microarray, reverse transcriptase-quantitative polymerase chain reaction was conducted for four genes specifically in the phenylpropanoid pathway. Expression data was obtained for different time points and fruit maturity stages. The highest expression level of the phenylpropanoid genes was detected 48 h after inoculation with P. expansum in both immature and mature apples. These results support the hypothesis that apples respond in a complex and diverse manner to the compatible compared to the non-host pathogen. To the best of our knowledge, this is the first study in apple fruit that has conducted an analysis of global changes in gene expression in response to a compatible (P. expansum) and non-host (P. digitatum) pathogen.

Keywords

Green mold Blue mold Maturity stage Microarray analysis Gene expression Phenylpropanoid pathway 

Supplementary material

11105_2013_676_MOESM1_ESM.doc (29 kb)
ESM 1(DOC 29 kb)
11105_2013_676_MOESM2_ESM.docx (327 kb)
ESM 2(DOCX 327 kb)
11105_2013_676_MOESM3_ESM.docx (307 kb)
ESM 3(DOCX 307 kb)
11105_2013_676_MOESM4_ESM.docx (318 kb)
ESM 4(DOCX 318 kb)
11105_2013_676_MOESM5_ESM.docx (302 kb)
ESM 5(DOCX 302 kb)
11105_2013_676_MOESM6_ESM.docx (323 kb)
ESM 6(DOCX 323 kb)
11105_2013_676_MOESM7_ESM.docx (80 kb)
ESM 7(DOCX 80 kb)
11105_2013_676_MOESM8_ESM.docx (81 kb)
ESM 8(DOCX 81.4 kb)
11105_2013_676_MOESM9_ESM.docx (81 kb)
ESM 9(DOCX 80.9 kb)
11105_2013_676_MOESM10_ESM.docx (15 kb)
ESM 10(DOCX 14 kb)

References

  1. Asai T, Stone JM, Heard JE, Kovtun Y, Yorgey P, Sheen J, Ausubel FM (2000) Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12:1823–1835PubMedCentralPubMedGoogle Scholar
  2. Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321PubMedCrossRefGoogle Scholar
  3. Ballester A-R, Lafuente MT, de Vos RCH, Bovy AG, González-Candelas L (2013) Citrus phenylpropanoids and defence against pathogens. Part I: metabolic profiling in elicited fruits. Food Chem 136:178–185PubMedCrossRefGoogle Scholar
  4. Ballester AR, Izquierdo A, Lafuente MT, González-Candelas L (2010) Biochemical and molecular characterization of induced resistance against Penicillium digitatum in citrus fruit. Postharvest Biol Technol 56:31–38CrossRefGoogle Scholar
  5. Ballester AR, Lafuente MT, González-Candelas L (2006) Spatial study of antioxidant enzymes, peroxidase and phenylalanine ammonia-lyase in the citrus fruit–Penicillium digitatum interaction. Postharvest Biol Technol 39:115–124CrossRefGoogle Scholar
  6. Bocsanczy A, Norelli JL, Phillips JG, Dardick CD, Korban SS, Bassett CL, Wisniewski ME (2009) Analysis of apple (Malus) responses to bacterial pathogens using an oligo microarray. Phytopathology 99:S14CrossRefGoogle Scholar
  7. Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol 59:411–416PubMedCentralPubMedCrossRefGoogle Scholar
  8. Buron-Moles G, Torres R, Amoako-Andoh F, Viñas I, Teixidó N, Usall J, Keulemans W, Davey MW (2014) Analysis of changes in protein abundance after wounding in ‘Golden Delicious’ apples. Postharvest Biol Technol 87:51–60CrossRefGoogle Scholar
  9. Cantu D, Vicente AR, Greve LC, Dewey FM, Bennett AB, Labavitch JM, Powell ALT (2008a) The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. Proc Natl Acad Sci U S A 105:859–864PubMedCentralPubMedCrossRefGoogle Scholar
  10. Cantu D, Vicente AR, Labavitch JM, Bennett AB, Powell ALT (2008b) Strangers in the matrix: plant cell walls and pathogen susceptibility. Trends Plant Sci 13:610–617PubMedCrossRefGoogle Scholar
  11. Cheng GW, Breen PJ (1991) Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J Am Soc Hortic Sci 116:865–869Google Scholar
  12. Chiu CM, You BJ, Chou CM, Yu PL, Yu FY, Pan SM, Bostock RM, Chung KR, Lee MH (2013) Redox status-mediated regulation of gene expression and virulence in the brown rot pathogen Monilinia fructicola. Plant Pathol 62:809–819CrossRefGoogle Scholar
  13. De Gara L, de Pinto MC, Tommasi F (2003) The antioxidant systems vis-a-vis reactive oxygen species during plant–pathogen interaction. Plant Physiol Bioch 41:863–870CrossRefGoogle Scholar
  14. Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang LJ (2002) The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol 3:371–390PubMedCrossRefGoogle Scholar
  15. Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70PubMedCentralPubMedCrossRefGoogle Scholar
  16. FAOSTAT (2011) http://faostat.fao.org/faostat/production. Accessed on 18 August 2013
  17. Gasic K, Hernandez A, Korban SS (2004) RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Rep 22:437–438CrossRefGoogle Scholar
  18. Gechev TS, Gadjev IZ, Hille J (2004) An extensive microarray analysis of AAL-toxin-induced cell death in Arabidopsis thaliana brings new insights into the complexity of programmed cell death in plants. Cell Mol Life Sci 61:1185–1197PubMedCrossRefGoogle Scholar
  19. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227PubMedCrossRefGoogle Scholar
  20. González-Candelas L, Alamar S, Sánchez-Torres P, Zacarias L, Marcos JF (2010) A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection. BMC Plant Biol 10:194–211PubMedCentralPubMedCrossRefGoogle Scholar
  21. Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757PubMedCrossRefGoogle Scholar
  22. Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hershkovitz V, Ben-Dayan C, Raphael G, Pasmanik-Chor M, Liu J, Belausov E, Aly R, Wisniewski M, Droby S (2012) Global changes in gene expression of grapefruit peel tissue in response to the yeast biocontrol agent Metschnikowia fructicola. Mol Plant Pathol 13:338–349PubMedCrossRefGoogle Scholar
  24. Janssen BJ, Thodey K, Schaffer RJ, Alba R, Balakrishnan L, Bishop R, Bowen JH, Crowhurst RN, Gleave AP, Ledger S, McArtney S, Pichler FB, Snowden KC, Ward S (2008) Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol 8:16PubMedCentralPubMedCrossRefGoogle Scholar
  25. Kavanagh J, Wood R (1967) Role of wounds in infection of oranges by Penicillium digitatum Sacc. Ann Appl Biol 60:375–383CrossRefGoogle Scholar
  26. Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275PubMedCrossRefGoogle Scholar
  27. Lauxmann MA, Brun B, Borsani J, Bustamante CA, Budde CO, Lara MV, Drincovich MF (2012) Transcriptomic profiling during the post-harvest of heat-treated Dixiland Prunus persica fruits: common and distinct response to heat and cold. Plos One 7:e51052PubMedCentralPubMedCrossRefGoogle Scholar
  28. Lee Y-P, Yu G-H, Seo YS, Han SE, Choi Y-O, Kim D, Mok I-G, Kim WT, Sung S-K (2007) Microarray analysis of apple gene expression engaged in early fruit development. Plant Cell Rep 26:917–926PubMedCrossRefGoogle Scholar
  29. Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593PubMedCrossRefGoogle Scholar
  30. Lewis NG, Davin LB, Sarkanen S (1999) The nature and functions of lignins. In: Barton DHR, Nakanishi K, Meth-Cohn O (eds) Comprehensive natural products chemistry, vol 1. Elsevier, Oxford, pp 617–745CrossRefGoogle Scholar
  31. Low PS, Merida JR (1996) The oxidative burst in plant defense: function and signal transduction. Physiol Plant 96:533–542CrossRefGoogle Scholar
  32. Macarisin D, Cohen L, Eick A, Rafael G, Belausov E, Wisniewski M, Droby S (2007) Penicillium digitatum suppresses production of hydrogen peroxide in host tissue infection of citrus fruit. Phytopathology 97:1491–1500PubMedCrossRefGoogle Scholar
  33. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498PubMedCrossRefGoogle Scholar
  34. Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk YK (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166PubMedCentralPubMedCrossRefGoogle Scholar
  35. Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914PubMedCrossRefGoogle Scholar
  36. Olson PD, Varner JE (1993) Hydrogen peroxide and lignification. Plant J 4:887–892CrossRefGoogle Scholar
  37. Pavez L, Hödar C, Olivares F, González M, Cambiazo V (2013) Effects of postharvest treatments on gene expression in Prunus persica fruit: normal and altered ripening. Postharvest Biol Technol 75:125–134CrossRefGoogle Scholar
  38. Peng XL, Xu WT, Wang Y, Huang KL, Liang ZH, Zhao WW, Luo YB (2010) Mycotoxin ochratoxin A-induced cell death and changes in oxidative metabolism of Arabidopsis thaliana. Plant Cell Rep 29:153–161PubMedCrossRefGoogle Scholar
  39. Planton G (1995) Le test amidon des pommes. Le Point, 6. CTIFL, ParisGoogle Scholar
  40. Quaglia M, Ederli L, Pasqualini S, Zazzerini A (2011) Biological control agents and chemical inducers of resistance for postharvest control of Penicillium expansum Link. on apple fruit. Postharvest Biol Technol 59:307–315CrossRefGoogle Scholar
  41. Rolke Y, Liu SJ, Quidde T, Williamson B, Schouten A, Weltring KM, Siewers V, Tenberge KB, Tudzynski B, Tudzynski P (2004) Functional analysis of H2O2-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Mol Plant Pathol 5:17–27PubMedCrossRefGoogle Scholar
  42. Sánchez-Torres P, González-Candelas L (2003) Isolation and characterization of genes differentially expressed during the interaction between apple fruit and Penicillium expansum. Mol Plant Pathol 4:447–457PubMedCrossRefGoogle Scholar
  43. Sarowar S, Zhao Y, Soria-Guerra RE, Ali S, Zheng D, Wang D, Korban SS (2011) Expression profiles of differentially regulated genes during the early stages of apple flower infection with Erwinia amylovora. J Exp Bot 62:4851–4861PubMedCrossRefGoogle Scholar
  44. Schaffer RJ, Friel EN, Souleyre EJF, Bolitho K, Thodey K, Ledger S, Bowen JH, Ma J-H, Nain B, Cohen D, Gleave AP, Crowhurst RN, Janssen BJ, Yao J-L, Newcomb RD (2007) A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiol 144:1899–1912PubMedCentralPubMedCrossRefGoogle Scholar
  45. Silva MC, Nicole M, Guerra-Guimaraes L, Rodrigues CJ (2002) Hypersensitive cell death and post-haustorial defence responses arrest the orange rust (Hemileia vastatrix) growth in resistant coffee leaves. Physiol Mol Plant Pathol 60:169–183CrossRefGoogle Scholar
  46. Simmons CR, Grant S, Altier DJ, Dowd PF, Crasta O, Folkerts O, Yalpani N (2001) Maize rhm1 resistance to Bipolaris maydis is associated with few differences in pathogenesis-related proteins and global mRNA profiles. Mol Plant-Microbe Interact 14:947–954PubMedCrossRefGoogle Scholar
  47. Singh SP, Singh Z, Swinny EE (2012) Climacteric level during fruit ripening influences lipid peroxidation and enzymatic and non-enzymatic antioxidative systems in Japanese plums (Prunus salicina Lindell). Postharvest Biol Technol 65:22–32CrossRefGoogle Scholar
  48. Soria-Guerra RE, Rosales-Mendoza S, Gasic K, Wisniewski ME, Band M, Korban SS (2011) Gene expression is highly regulated in early developing fruit of apple. Plant Mol Biol Rep 29:885–897CrossRefGoogle Scholar
  49. Spotts RA, Sanderson PG, Lennox CL, Sugar D, Cervantes LA (1998) Wounding, wound healing and staining of mature pear fruit. Postharvest Biol Technol 13:27–36CrossRefGoogle Scholar
  50. Stone JM, Heard JE, Asai T, Ausubel FM (2000) Simulation of fungal-mediated cell death by fumonisin B1 and selection of fumonisin B1-resistant (fbr) Arabidopsis mutants. Plant Cell 12:1811–1822PubMedCentralPubMedGoogle Scholar
  51. Su J, Tu K, Cheng L, Tu SC, Wang M, Xu HR, Zhan G (2011) Wound-induced H2O2 and resistance to Botrytis cinerea decline with the ripening of apple fruit. Postharvest Biol Technol 62:64–70CrossRefGoogle Scholar
  52. Tao Y, Xie ZY, Chen WQ, Glazebrook J, Chang HS, Han B, Zhu T, Zou GZ, Katagiri F (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. The Plant Cell 15:317–330PubMedCentralPubMedCrossRefGoogle Scholar
  53. Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MapMan: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939PubMedCrossRefGoogle Scholar
  54. Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429PubMedCrossRefGoogle Scholar
  55. Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378PubMedCentralPubMedCrossRefGoogle Scholar
  56. Torres R, Valentines MC, Usall J, Viñas I, Larrigaudiere C (2003) Possible involvement of hydrogen peroxide in the development of resistance mechanisms in ‘Golden Delicious’ apple fruit. Postharvest Biol Technol 27:235–242CrossRefGoogle Scholar
  57. van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162PubMedCrossRefGoogle Scholar
  58. van Loon LC, van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97CrossRefGoogle Scholar
  59. Vierling E (1991) The roles of heat-shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620CrossRefGoogle Scholar
  60. Vilanova L, Teixidó N, Torres R, Usall J, Viñas I (2012a) The infection capacity of P. expansum and P. digitatum on apples and histochemical analysis of host response. Int J Food Microbiol 157:360–367PubMedCrossRefGoogle Scholar
  61. Vilanova L, Torres R, Viñas I, González-Candelas L, Usall J, Fiori S, Solsona C, Teixidó N (2013) Wound response in orange as a resistance mechanism against Penicillium digitatum (pathogen) and P. expansum (non-host pathogen). Postharvest Biol Technol 78:113–122CrossRefGoogle Scholar
  62. Vilanova L, Viñas I, Torres R, Usall J, Jauset AM, Teixidó N (2012b) Infection capacities in the orange-pathogen relationship: compatible (Penicillium digitatum) and incompatible (Penicillium expansum) interactions. Food Microbiol 29:56–66PubMedCrossRefGoogle Scholar
  63. Villarreal NM, Bustamante CA, Civello PM, Martinez GA (2010) Effect of ethylene and 1-MCP treatments on strawberry fruit ripening. J Sci Food Agric 90:683–689PubMedGoogle Scholar
  64. Wang HQ, Arakawa O, Motomura Y (2000) Influence of maturity and bagging on the relationship between anthocyanin accumulation and phenylalanine ammonia-lyase (PAL) activity in ‘Jonathan’ apples. Postharvest Biol Technol 19:123–128CrossRefGoogle Scholar
  65. Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P, Afshari C, Paules RS (2001) Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol 8:625–637PubMedCrossRefGoogle Scholar
  66. Yun Z, Gao HJ, Liu P, Liu SZ, Luo T, Jin S, Xu Q, Xu J, Cheng YJ, Deng XX (2013) Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment. BMC Plant Biol 13:44PubMedCentralPubMedCrossRefGoogle Scholar
  67. Zhang Y, Lubberstedt T, Xu ML (2013) The genetic and molecular basis of plant resistance to pathogens. J Genet Genomics 40:23–35PubMedCrossRefGoogle Scholar
  68. Zhu H, Dardick CD, Beers EP, Callanhan AM, Xia R, Yuan R (2011) Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk. BMC Plant Biol 11:138PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • L. Vilanova
    • 1
  • M. Wisniewski
    • 2
  • J. Norelli
    • 2
  • I. Viñas
    • 3
  • R. Torres
    • 1
  • J. Usall
    • 1
  • J. Phillips
    • 4
  • S. Droby
    • 5
  • N. Teixidó
    • 1
  1. 1.XaRTA-PostharvestIRTALleidaSpain
  2. 2.Appalachian Fruit Research StationUS Department of Agriculture-Agricultural Research Service (USDA-ARS)KearneysvilleUSA
  3. 3.Food Technology DepartmentLleida University, XaRTA-Postharvest, Agrotecnio CenterLleidaSpain
  4. 4.Eastern Reional Research CenterUS Department of Agriculture-Agricultural Research Service (USDA-ARS)WyndmoorUSA
  5. 5.Department of Postharvest Science, ARO, the Volcani CenterBet DaganIsrael

Personalised recommendations