Skip to main content
Log in

A Short Peptide in Rice Glutelin Directs Trafficking of Protein into the Protein Storage Vacuoles of the Endosperm Cells

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Several protein vacuolar sorting determinants (VSDs) have been identified in higher plants. Glutelin as a major storage protein in rice endosperm cells is transported to a protein storage vacuole (PSV). How glutelin sort to PSV and the mechanism of the intracellular trafficking has remained unknown. Here, a sequence-specific vacuolar sorting determinant (ssVSD) is identified by serial deletions of rice glutelin and its role in the protein-sorting process analyzed by transgenic approaches and transient assays. The ssVSD consists of six residues (QRLKHN) within the β-subunit of glutelin is sufficient to direct the glutelin to the protein body II in the rice endosperm cells. We found that protein-sorting via the ssVSD takes place by a ∼680-kDa sorting complex containing the receptor Oryza sativa receptor-like membrane Ring-H2 3 (OsRMR3). Further study indicated that OsRMR3 and the ssVSD are essential for glutelin trafficking. Furthermore, site-directed mutagenesis showed that the leucine residues in the ssVSD are critical for protein sorting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed SU, Rojo E, Kovaleva V, Venkataraman S, Dombrowski JE, Matsuoka K, Raikhel NV (2000) The plant vacuolar sorting receptor AtELP is involved in transport of NH(2)-terminal propeptide-containing vacuolar proteins in Arabidopsis thaliana. J Cell Biol 149(7):1335–1344

    Article  PubMed  CAS  Google Scholar 

  • Barber DL, Lott JNA, Yang H (1998) Properties of rice (Oryza sativa L) faecal protein particles: light and electronic microscopic observations. J Cereal Sci 27:83–93

    Article  CAS  Google Scholar 

  • Brown JC, Jolliffe NA, Frigerio L, Roberts LM (2003) Sequence-specific, Golgi-dependent vacuolar targeting of castor bean 2S albumin. Plant J 36(5):711–719

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16(12):3285–3303

    Google Scholar 

  • Choi SB, Wang C, Muench DG, Ozawa K, Franceschi VR, Wu Y, Okita TW (2000) Messenger RNA targeting of rice seed storage proteins to specific ER subdomains. Nature 407(6805):765–767

    Article  PubMed  CAS  Google Scholar 

  • Chrispeels MJ, Raikhel NV (1992) Short peptide domains target proteins to plant vacuoles. Cell 68(4):613–616

    Article  PubMed  CAS  Google Scholar 

  • Denecke J, De Rycke R, Botterman J (1992) Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J 11(6):2345–2355

    PubMed  CAS  Google Scholar 

  • Drakakaki G, Marcel S, Arcalis E, Altmann F, Gonzalez-Melendi P, Fischer R, Christou P, Stoger E (2006) The intracellular fate of a recombinant protein is tissue dependent. Plant Physiol 141(2):578–586

    Google Scholar 

  • Frigerio L, de Virgilio M, Prada A, Faoro F, Vitale A (1998) Sorting of phaseolin to the vacuole is saturable and requires a short C-terminal peptide. Plant Cell 10(6):1031–1042

    PubMed  CAS  Google Scholar 

  • Frigerio L, Jolliffe NA, Di Cola A, Felipe DH, Paris N, Neuhaus JM, Lord JM, Ceriotti A, Roberts LM (2001) The internal propeptide of the ricin precursor carries a sequence-specific determinant for vacuolar sorting. Plant Physiol 126(1):167–175

    Article  PubMed  CAS  Google Scholar 

  • Gomord V, Denmat LA, Fitchette-Laine AC, Satiat-Jeunemaitre B, Hawes C, Faye L (1997) The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER. Plant J 11(2):313–325

    Article  PubMed  CAS  Google Scholar 

  • Hadlington JL, Santoro A, Nuttall J, Denecke J, Ma JK, Vitale A, Frigerio L (2003) The C-terminal extension of a hybrid immunoglobulin A/G heavy chain is responsible for its Golgi-mediated sorting to the vacuole. Mol Biol Cell 14(6):2592–2602

    Article  PubMed  CAS  Google Scholar 

  • He Y, Ning T, Xie T, Qiu Q, Zhang L, Sun Y, Jiang D, Fu K, Yin F, Zhang W, Shen L, Wang H, Li J, Lin Q, Li H, Zhu Y, Yang D (2011) Large-scale production of functional human serum albumin from transgenic rice seeds. Proc Natl Acad Sci U S A 108(47):19078–19083

    Google Scholar 

  • Herman EM (2008) Endoplasmic reticulum bodies: solving the insoluble. Curr Opin Plant Biol 11(6):672–679

    Google Scholar 

  • Hinz G, Colanesi S, Hillmer S, Rogers JC, Robinson DG (2007) Localization of vacuolar transport receptors and cargo proteins in the Golgi apparatus of developing Arabidopsis embryos. Traffic (Copenhagen, Denmark) 8(10):1452–1464

    Article  CAS  Google Scholar 

  • Hinz G, Hillmer S, Baumer M, Hohl II (1999) Vacuolar storage proteins and the putative vacuolar sorting receptor BP-80 exit the golgi apparatus of developing pea cotyledons in different transport vesicles. Plant Cell 11(8):1509–1524

    PubMed  CAS  Google Scholar 

  • Holkeri H, Vitale A (2001) Vacuolar sorting determinants within a plant storage protein trimer act cumulatively. Traffic (Copenhagen, Denmark) 2(10):737–741

    Article  CAS  Google Scholar 

  • Holwerda BC, Padgett HS, Rogers JC (1992) Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell 4(3):307–318

    PubMed  CAS  Google Scholar 

  • Ibl V, Stoger E (2012) The formation, function and fate of protein storage compartments in seeds. Protoplasma 249(2):379–392

    Google Scholar 

  • Iwao Y, Hiraike M, Kragh-Hansen U, Mera K, Noguchi T, Anraku M, Kawai K, Maruyama T, Otagiri M (2007) Changes of net charge and alpha-helical content affect the pharmacokinetic properties of human serum albumin. Biochim Biophys Acta 1774(12):1582–1590

    Google Scholar 

  • Jiang L, Rogers JC (1998) Integral membrane protein sorting to vacuoles in plant cells: evidence for two pathways. J Cell Biol 143(5):1183–1199

    Article  PubMed  CAS  Google Scholar 

  • Johnson AL, Braidotti P, Pietra GG, Russo SJ, Kabore A, Wang WJ, Beers MF (2001) Post-translational processing of surfactant protein-C proprotein: targeting motifs in the NH(2)-terminal flanking domain are cleaved in late compartments. Am J Respir Cell Mol Biol 24(3):253–263

    Article  PubMed  CAS  Google Scholar 

  • Jolliffe NA, Brown JC, Neumann U, Vicre M, Bachi A, Hawes C, Ceriotti A, Roberts LM, Frigerio L (2004) Transport of ricin and 2S albumin precursors to the storage vacuoles of Ricinus communis endosperm involves the Golgi and VSR-like receptors. Plant J 39(6):821–833

    Article  PubMed  CAS  Google Scholar 

  • Jolliffe NA, Craddock CP, Frigerio L (2005) Pathways for protein transport to seed storage vacuoles. Biochem Soc Trans 33(Pt 5):1016–1018

    Google Scholar 

  • Kawagoe Y, Suzuki K, Tasaki M, Yasuda H, Akagi K, Katoh E, Nishizawa NK, Ogawa M, Takaiwa F (2005) The critical role of disulfide bond formation in protein sorting in the endosperm of rice. Plant Cell 17(4):1141–1153

    Article  PubMed  CAS  Google Scholar 

  • Khan I, Twyman RM, Arcalis E, Stoger E (2012) Using storage organelles for the accumulation and encapsulation of recombinant proteins. Biotechnol J 7(9):1099–1108

    Google Scholar 

  • Kirsch T, Paris N, Butler JM, Beevers L, Rogers JC (1994) Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci U S A 91(8):3403–3407

    Article  PubMed  CAS  Google Scholar 

  • Kirsch T, Saalbach G, Raikhel NV, Beevers L (1996) Interaction of a potential vacuolar targeting receptor with amino- and carboxyl-terminal targeting determinants. Plant Physiol 111(2):469–474

    Article  PubMed  CAS  Google Scholar 

  • Koide Y, Matsuoka K, Ohto M, Nakamura K (1999) The N-terminal propeptide and the C terminus of the precursor to 20-kilo-dalton potato tuber protein can function as different types of vacuolar sorting signals. Plant Cell Physiol 40(11):1152–1159

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K (2000) C-terminal propeptides and vacuolar sorting by BP-80-type proteins: not all C-terminal propeptides are equal. Plant Cell 12(2):181–182

    PubMed  CAS  Google Scholar 

  • Matsuoka K, Nakamura K (1991) Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc Natl Acad Sci U S A 88(3):834–838

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K, Nakamura K (1999) Large alkyl side-chains of isoleucine and leucine in the NPIRL region constitute the core of the vacuolar sorting determinant of sporamin precursor. Plant Mol Biol 41(6):825–835

    Article  PubMed  CAS  Google Scholar 

  • Muntz K (1998) Deposition of storage proteins. Plant Mol Biol 38(1–2):77–99

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Matsuoka K, Mukumoto F, Watanabe E (1993) Processing and transport to the vacuole of a precursor to sweet potato sporamin in transformed tobacco cell line BY-2. J Exp Bot 44(Suppl):331–338

    CAS  Google Scholar 

  • Neuhaus JM, Rogers JC (1998) Sorting of proteins to vacuoles in plant cells. Plant Mol Biol 38(1–2):127–144

    Article  PubMed  CAS  Google Scholar 

  • Nicholson L, Gonzalez-Melendi P, van Dolleweerd C, Tuck H, Perrin Y, Ma JK, Fischer R, Christou P, Stoger E (2005) A recombinant multimeric immunoglobulin expressed in rice shows assembly-dependent subcellular localization in endosperm cells. Plant Biotechnol J 3(1):115–127

    Google Scholar 

  • Niemes S, Labs M, Scheuring D, Krueger F, Langhans M, Jesenofsky B, Robinson DG, Pimpl P (2010) Sorting of plant vacuolar proteins is initiated in the ER. Plant J 62(4):601–614

    Article  PubMed  CAS  Google Scholar 

  • Ning T, Xie T, Qiu Q, Yang W, Zhou S, Zhou L, Zheng C, Zhu Y, Yang D (2008) Oral administration of recombinant human granulocyte-macrophage colony stimulating factor expressed in rice endosperm can increase leukocytes in mice. Biotechnol Lett 30(9):1679–1686

    Google Scholar 

  • Ogasawara K, Yamada K, Christeller JT, Kondo M, Hatsugai N, Hara-Nishimura I, Nishimura M (2009) Constitutive and inducible ER bodies of Arabidopsis thaliana accumulate distinct beta-glucosidases. Plant Cell Physiol 50(3):480–488

    Google Scholar 

  • Paris N, Neuhaus JM (2002) BP-80 as a vacuolar sorting receptor. Plant Mol Biol 50(6):903–914

    Article  PubMed  CAS  Google Scholar 

  • Paris N, Rogers SW, Jiang L, Kirsch T, Beevers L, Phillips TE, Rogers JC (1997) Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol 115(1):29–39

    Article  PubMed  CAS  Google Scholar 

  • Park M, Lee D, Lee GJ, Hwang I (2005) AtRMR1 functions as a cargo receptor for protein trafficking to the protein storage vacuole. J Cell Biol 170(5):757–767

    Google Scholar 

  • Peters T (1995) All about albumin: biochemistry, genetics, and medical applications. Academic, San Diego

    Google Scholar 

  • Pompa A, De Marchis F, Vitale A, Arcioni S, Bellucci M (2010) An engineered C-terminal disulfide bond can partially replace the phaseolin vacuolar sorting signal. Plant J 61(5):782–791

    Google Scholar 

  • Reyes FC, Buono R, Otegui MS (2011) Plant endosomal trafficking pathways. Curr Opin Plant Biol 14(6):666–673

    Google Scholar 

  • Saalbach G, Jung R, Kunze G, Saalbach I, Adler K, Muntz K (1991) Different legumin protein domains act as vacuolar targeting signals. Plant Cell 3(7):695–708

    PubMed  CAS  Google Scholar 

  • Saint-Jean B, Seveno-Carpentier E, Alcon C, Neuhaus JM, Paris N (2010) The cytosolic tail dipeptide Ile-Met of the pea receptor BP80 is required for recycling from the prevacuole and for endocytosis. Plant Cell 22(8):2825–2837

    Google Scholar 

  • Schroeder MR, Borkhsenious ON, Matsuoka K, Nakamura K, Raikhel NV (1993) Colocalization of barley lectin and sporamin in vacuoles of transgenic tobacco plants. Plant Physiol 101(2):451–458

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Wang J, Ding Y, Lo SW, Gouzerh G, Neuhaus JM, Jiang L (2011) The rice RMR1 associates with a distinct prevacuolar compartment for the protein storage vacuole pathway. Mol Plant 4(5):854–868

    Google Scholar 

  • Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins—structures and biosynthesis. Plant Cell 7(7):945–956

    PubMed  CAS  Google Scholar 

  • Shimada T, Watanabe E, Tamura K, Hayashi Y, Nishimura M, Hara-Nishimura I (2002) A vacuolar sorting receptor PV72 on the membrane of vesicles that accumulate precursors of seed storage proteins (PAC vesicles). Plant Cell Physiol 43(10):1086–1095

    Article  PubMed  CAS  Google Scholar 

  • Stoger E (2012) Plant bioreactors—the taste of sweet success. Biotechnol J 7(4):475–476

    Google Scholar 

  • Tormakangas K, Hadlington JL, Pimpl P, Hillmer S, Brandizzi F, Teeri TH, Denecke J (2001) A vacuolar sorting domain may also influence the way in which proteins leave the endoplasmic reticulum. Plant Cell 13(9):2021–2032

    PubMed  CAS  Google Scholar 

  • Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11(11):777–788

    Google Scholar 

  • Vitale A, Raikhel N (1999) What do proteins need to reach different vacuoles? Trends Plant Sci 4:149–155

    Article  PubMed  Google Scholar 

  • Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40(3):428–438

    Google Scholar 

  • Wandelt CI, Khan MR, Craig S, Schroeder HE, Spencer D, Higgins TJ (1992) Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant J 2(2):181–192

    PubMed  CAS  Google Scholar 

  • Watanabe T, Sorensen EM, Naito A, Schott M, Kim S, Ahlquist P (2007) Involvement of host cellular multivesicular body functions in hepatitis B virus budding. Proc Natl Acad Sci U S A 104(24):10205–10210

    Article  PubMed  CAS  Google Scholar 

  • Xie T, Qiu Q, Zhang W, Ning T, Yang W, Zheng C, Wang C, Zhu Y, Yang D (2008) A biologically active rhIGF-1 fusion accumulated in transgenic rice seeds can reduce blood glucose in diabetic mice via oral delivery. Peptides 29(11):1862–1870

    Article  PubMed  CAS  Google Scholar 

  • Yamagata H, Sugimoto T, Tanaka K, Kasai Z (1982) Biosynthesis of storage proteins in developing rice seeds. Plant Physiol 70(4):1094–1100

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Wu L, Hwang YS, Chen L, Huang N (2001) Expression of the REB transcriptional activator in rice grains improves the yield of recombinant proteins whose genes are controlled by a Reb-responsive promoter. Proc Natl Acad Sci U S A 98(20):11438–11443

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Liwen Jiang for kindly providing the OsRMR1 and AtVSR1 antibodies, MVB and TGN marker plasmids. This work was granted by the Projects of the National Natural Science Foundation of China (no. 30671286) and the National High-Tech R&D Program (863 Program) of China (no. 2011AA100604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daichang Yang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemental Table 1

Vacuolar sorting determinants (VSD) found in higher plants (JPEG 23 kb)

High-resolution image (TIFF 2,069 kb)

Supplemental Figure 1

Supporting information for the different constructs. a Schematic diagram of the different truncated fragments from the glutelin β-subunit expressed in the different transgenic lines. b The hydrophobicity of the glutelin β-subunit as determined with MacVector software (version: 11.0.4). c The amino acid sequence of the glutelin β-subunit (JPEG 31 kb)

High-resolution image (TIFF 1,163 kb)

Supplemental Figure 2

Diagram of the protein sorting and trafficking routes in the rice endosperm cells. The red circles represent the proteins without VSD or with the ER retention signal (K/HDEL); the green circles represent the proteins containing VSD; the yellow circles represent the proteins containing secretion signals and orange unregulated circles indicate VSD-specific receptors, such as OsRMR3 (JPEG 17 kb)

High resolution image (TIFF 572 kb)

Supplemental Figure 3

Immuno-electron micrographs (IEM) of transgenic endosperm cells expressing OsrHSA. b and d Partial magnifications of the marked squares of the micrographs of a and c. The location of the gold particles indicates that OsrHSA is ultimately destined to the cytosolic space as shown in a and b. c and d The ribosome studded endoplasmic reticulum membrane (ERM), where OsrHSA is synthesized (JPEG 80 kb)

High-resolution image (TIFF 2,770 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Xie, T., Qiu, Q. et al. A Short Peptide in Rice Glutelin Directs Trafficking of Protein into the Protein Storage Vacuoles of the Endosperm Cells. Plant Mol Biol Rep 31, 1492–1505 (2013). https://doi.org/10.1007/s11105-013-0624-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0624-x

Keywords

Navigation