Skip to main content
Log in

Lower Levels of Expression of FATA2 Gene Promote Longer Siliques with Modified Seed Oil Content in Arabidopsis thaliana

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Fatty acyl thioesterases control the termination of intraplastidial fatty acid synthesis by hydrolyzing fatty acyl-ACP complexes. The fatty acyl thioesterase A (FATA) gene family in Arabidopsis comprises two members, i.e., FATA1 and FATA2. Previous studies have shown that FATAs display high specificity for unsaturated fatty acids. However, the expression pattern and individual roles of these two FATA genes remains unknown. In this study, we initially studied the expression patterns of FATA1 and FATA2 in various organs of Arabidopsis and we found that FATA1 was expressed at low level in all organs examined and FATA2 was detected in all organs examined, with especially high accumulation in siliques. The transient expression of a FATA2-eGFP fusion in Arabidopsis green leaf protoplasts showed that FATA2 was localized in chloroplasts. A T-DNA insertion mutant line of FATA2 (named fata2) was obtained and used for phenotypic observation. Semiquantitative RT-PCR assay showed that the expression level of FATA2 decreased significantly in fata2 compared with that in wild type. Furthermore, fata2 mutants produced longer siliques with more seeds, whereas seed size was slightly smaller than that of wild type. Compositional analysis of seed oil revealed that, except for a subtly decreased C24:0 and unchanged C22:0 level, all other fatty acids were increased by between 10 and 60 % in fata2 dry seeds compared with those in wild-type. Taken together, our results indicate that FATA2 plays important roles in lipid metabolism in seeds and in silique development in Arabidopsis thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anai T, Koga M, Tanaka H, Kinoshita T, Rahman SM, Takagi Y (2003) Improvement of rice (Oryza sativa L.) seed oil quality through introduction of a soybean microsomal omega-3 fatty acid desaturase gene. Plant Cell Rep 21:988–992. doi:10.1007/s00299-003-0609-6

    Article  PubMed  CAS  Google Scholar 

  • Awai K, Xu C, Tamot B, Benning C (2006) A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. Proc Natl Acad Sci USA 103:10817–10822. doi:10.1073/pnas.0602754103

    Article  PubMed  CAS  Google Scholar 

  • Bonaventure G, Salas JJ, Pollard MR, Ohlrogge JB (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 15:1020–1033

    Article  PubMed  CAS  Google Scholar 

  • Browse J, Somerville C (1991) Glycerolipid synthesis: biochemistry and regulation. Annu Rev Plant Biol 42:467–506

    Article  CAS  Google Scholar 

  • Chen Y, Chen Z, Kang J, Kang D, Gu H, Qin G (2013) AtMYB14 regulates cold tolerance in Arabidopsis. Plant Mol Biol Rep 31:87–97

    Article  CAS  Google Scholar 

  • Douce R, Joyard J (1990) Biochemistry and function of the plastid envelope. Annu Rev Cell Biol 6:173–216. doi:10.1146/annurev.cb.06.110190.001133

    Article  PubMed  CAS  Google Scholar 

  • Gerdes L, Bals T, Klostermann E, Karl M, Philippar K, Hunken M, Soll J, Schunemann D (2006) A second thylakoid membrane-localized Alb3/OxaI/YidC homologue is involved in proper chloroplast biogenesis in Arabidopsis thaliana. J Biol Chem 281:16632–16642. doi:10.1074/jbc.M513623200

    Article  PubMed  CAS  Google Scholar 

  • Hills MJ (2004) Control of storage-product synthesis in seeds. Curr Opin Plant Biol 7:302–308. doi:10.1016/j.pbi.2004.03.003

    Article  PubMed  CAS  Google Scholar 

  • Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861–874

    Article  PubMed  CAS  Google Scholar 

  • Jones A, Davies HM, Voelker TA (1995) Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7:359–371. doi:10.1105/tpc.7.3.359

    PubMed  CAS  Google Scholar 

  • Kinney AJ, Cahoon EB, Hitz WD (2002) Manipulating desaturase activities in transgenic crop plants. Biochem Soc Trans 30:1099–1103. doi:10.1042/

    Article  PubMed  CAS  Google Scholar 

  • Kodama H, Hamada T, Horiguchi G, Nishimura M, Iba K (1994) Genetic enhancement of cold tolerance by expression of a gene for chloroplast [omega]-3 fatty acid desaturase in transgenic tobacco. Plant Physiol 105:601–605

    PubMed  CAS  Google Scholar 

  • Kohler RH, Hanson MR (2000) Plastid tubules of higher plants are tissue-specific and developmentally regulated. J Cell Sci 113(Pt 1):81–89

    PubMed  CAS  Google Scholar 

  • Koo AJ, Ohlrogge JB, Pollard M (2004) On the export of fatty acids from the chloroplast. J Biol Chem 279:16101–16110. doi:10.1074/jbc.M311305200

    Article  PubMed  CAS  Google Scholar 

  • Li F, Wu X, Lam P, Bird D, Zheng H, Samuels L, Jetter R, Kunst L (2008) Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol 148:97–107. doi:10.1104/pp.108.123471

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Beisson F, Pollard M, Ohlrogge J (2006) Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation. Phytochemistry 67:904–915. doi:10.1016/j.phytochem.2006.02.015

    Article  PubMed  CAS  Google Scholar 

  • Machettira AB, Gross LE, Tillmann B, Weis BL, Englich G, Sommer MS, Koniger M, Schleiff E (2011) Protein-induced modulation of chloroplast membrane morphology. Front Plant Sci 2:1–11. doi:10.3389/fpls.2011.00118

    Google Scholar 

  • Moreno-Perez AJ, Venegas-Caleron M, Vaistij FE, Salas JJ, Larson TR, Garces R, Graham IA, Martinez-Force E (2012) Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds. Planta 235:629–639. doi:10.1007/s00425-011-1534-5

    Article  PubMed  CAS  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970. doi:10.1105/tpc.7.7.957

    PubMed  CAS  Google Scholar 

  • Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–136. doi:10.1146/annurev.arplant.48.1.109

    Article  PubMed  CAS  Google Scholar 

  • Oikawa K, Yamasato A, Kong SG, Kasahara M, Nakai M, Takahashi F, Ogura Y, Kagawa T, Wada M (2008) Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiol 148:829–842. doi:10.1104/pp.108.123075

    Article  PubMed  CAS  Google Scholar 

  • Qin YM, Hu CY, Pang Y, Kastaniotis AJ, Hiltunen JK, Zhu YX (2007) Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 19:3692–3704. doi:10.1105/tpc.107.054437

    Article  PubMed  CAS  Google Scholar 

  • Roudier F, Gissot L, Beaudoin F, Haslam R, Michaelson L, Marion J, Molino D, Lima A, Bach L, Morin H, Tellier F, Palauqui JC, Bellec Y, Renne C, Miquel M, Dacosta M, Vignard J, Rochat C, Markham JE, Moreau P, Napier J, Faure JD (2010) Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell 22:364–375. doi:10.1105/tpc.109.071209

    Article  PubMed  CAS  Google Scholar 

  • Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191–1206

    Article  PubMed  CAS  Google Scholar 

  • Salas JJ, Ohlrogge JB (2002) Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 403:25–34. doi:10.1016/S0003-9861(02)00017-6

    Article  PubMed  CAS  Google Scholar 

  • Schnurr JA, Shockey JM, de Boer GJ, Browse JA (2002) Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis. Plant Physiol 129:1700–1709. doi:10.1104/pp.003251

    Article  PubMed  CAS  Google Scholar 

  • Sussman MR, Amasino RM, Young JC, Krysan PJ, Austin-Phillips S (2000) The Arabidopsis knockout facility at the University of Wisconsin-Madison. Plant Physiol 124:1465–1467

    Article  PubMed  CAS  Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21. doi:10.1006/mben.2001.0204

    Article  PubMed  CAS  Google Scholar 

  • Vigeolas H, Huhn D, Geigenberger P (2011) Nonsymbiotic hemoglobin-2 leads to an elevated energy state and to a combined increase in polyunsaturated fatty acids and total oil content when overexpressed in developing seeds of transgenic Arabidopsis plants. Plant Physiol 155:1435–1444. doi:10.1104/pp.110.166462

    Article  PubMed  CAS  Google Scholar 

  • Vigeolas H, Waldeck P, Zank T, Geigenberger P (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J 5:431–441. doi:10.1111/j.1467-7652.2007.00252.x

    Article  PubMed  CAS  Google Scholar 

  • Wang S-S, Song Z-B, Sun Z, Zhang J, Mei Y, Nian H-J, Li K-Z, Chen L-M (2012) Effects of formaldehyde stress on physiological characteristics and gene expression associated with photosynthesis in Arabidopsis thaliana. Plant Mol Biol Rep 30:1291–1302

    Article  CAS  Google Scholar 

  • Xu C, Fan J, Froehlich JE, Awai K, Benning C (2005) Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in Arabidopsis. Plant Cell 17:3094–3110. doi:10.1105/tpc.105.035592

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30. doi:10.1186/1746-4811-7-30

    Article  PubMed  CAS  Google Scholar 

  • Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong GY, Tarczynski MC, Shen B (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372. doi:10.1038/ng.85

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Katavic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC (1997) Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9:909–923. doi:10.1105/tpc.9.6.909

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from Talent Introduction of Northwest A&F University (Z1H1020822) and the Team Project of the Natural Science Foundation of Guangdong Province (9351064201000002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huixian Zhao or Zhenlan Liu.

Additional information

Qian Wang and Wenda Huang contributed equally to this work and were co-first authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Huang, W., Jiang, Q. et al. Lower Levels of Expression of FATA2 Gene Promote Longer Siliques with Modified Seed Oil Content in Arabidopsis thaliana . Plant Mol Biol Rep 31, 1368–1375 (2013). https://doi.org/10.1007/s11105-013-0612-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0612-1

Keywords

Navigation