Skip to main content
Log in

Cloning and Characterization of FLOWERING LOCUS T-Like Genes from the Perennial Geophyte Saffron Crocus (Crocus sativus)

  • Brief Communication
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The transition to flowering is one of the most important developmental decisions made by plants. At the molecular level, many genes coordinate this transition. Among these, genes encoding for phosphatidylethanolamine-binding proteins (PEBPs) play important roles in regulating flower time and the fate of inflorescence meristem. To investigate the role of PEBPs in an industrially important crop cultivated for its nutritional and medicinal properties, the monocotyledonous species Crocus sativus L., we have isolated three FLOWERING LOCUS T (FT)-like genes designated as CsatFT1-like, CsatFT2-like, and CsatFT3-like. The isolated genes maintain the exon/intron organization of FT-like genes and encode proteins similar to the members of the PEBP family. Phylogenetic and amino acid analysis at critical positions confirmed that the isolated sequence belongs to the FT clade of the PEBP family phylogeny distinctly from the TERMINAL FLOWER 1 (TFL1) and MOTHER OF FT AND TFL1 clades. Expression analysis indicated differences in the expression of the three FT-like genes in different organs and different expressions during the day–night diurnal clock. Additionally, analysis of isolated promoter sequences using computational methods reveals the preservation of common binding motifs in FT-like promoters from other species, thus suggesting their importance among plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Adrian J, Farrona S, Reimer JJ, Albani MC, Coupland G, Turck F (2010) cis-Regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. Plant Cell 22(5):1425–1440

    Article  PubMed  CAS  Google Scholar 

  • Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25(3):605–614

    Article  PubMed  CAS  Google Scholar 

  • Argiriou A, Michailidis G, Tsaftaris AS (2008) Characterization and expression analysis of TERMINAL FLOWER1 homologs from cultivated alloteraploid cotton (Gossypium hirsutum) and its diploid progenitors. J Plant Physiol 165(15):1636–1646

    Article  PubMed  CAS  Google Scholar 

  • Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G, Samach A, Lifschitz E (2006) The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J 46(3):462–476

    Article  PubMed  CAS  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275(5296):80–83

    Article  PubMed  CAS  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316(5827):1030–1033

    Article  PubMed  CAS  Google Scholar 

  • de Folter S, Angenent GC (2006) trans meets cis in MADS science. Trends Plant Sci 11(5):224–231

    Article  PubMed  Google Scholar 

  • Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12(2):178–184

    Article  PubMed  CAS  Google Scholar 

  • Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127(4):725–734

    PubMed  CAS  Google Scholar 

  • Gusmaroli G, Tonelli C, Mantovani R (2002) Regulation of novel members of the Arabidopsis thaliana CCAAT-binding nuclear factor Y subunits. Gene 283(1–2):41–48

    Article  PubMed  CAS  Google Scholar 

  • Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci U S A 102(21):7748–7753

    Article  PubMed  CAS  Google Scholar 

  • Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309(5741):1694–1696

    Article  PubMed  CAS  Google Scholar 

  • Immink RG, Tonaco IA, de Folter S, Shchennikova A, van Dijk AD, Busscher-Lange J, Borst JW, Angenent GC (2009) SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Genome Biol 10(2):R24

    Article  PubMed  Google Scholar 

  • Karlgren A, Gyllenstrand N, Kallman T, Sundstrom JF, Moore D, Lascoux M, Lagercrantz U (2011) Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol 156(4):1967–1977

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann K, Wellmer F, Muino JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueno F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL (2012) Orchestration of floral initiation by APETALA1. Science 328(5974):85–89

    Article  Google Scholar 

  • Kikuchi R, Kawahigashi H, Ando T, Tonooka T, Handa H (2009) Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering. Plant Physiol 149(3):1341–1353

    Article  PubMed  CAS  Google Scholar 

  • Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135(4):767–774

    Article  PubMed  CAS  Google Scholar 

  • Kumimoto RW, Adam L, Hymus GJ, Repetti PP, Reuber TL, Marion CM, Hempel FD, Ratcliffe OJ (2008) The nuclear factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis. Planta 228(5):709–723

    Article  PubMed  CAS  Google Scholar 

  • Li C, Dubcovsky J (2008) Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J 55(4):543–554

    Article  PubMed  CAS  Google Scholar 

  • Lin MK, Belanger H, Lee YJ, Varkonyi-Gasic E, Taoka KI, Miura E, Xoconostle-Cazares B, Gendler K, Jorgensen RA, Phinney B, Lough TJ, Lucas WJ (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19(5):1488–506

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Omura M (2009) Differences in seasonal expression of flowering genes between deciduous trifoliate orange and evergreen Satsuma mandarin. Tree Physiol 29(7):921–926

    Article  PubMed  CAS  Google Scholar 

  • Ohshima S, Murata M, Sakamoto W, Ogura Y, Motoyoshi F (1997) Cloning and molecular analysis of the Arabidopsis gene Terminal Flower 1. Mol Gen Genet 254(2):186–194

    Article  PubMed  CAS  Google Scholar 

  • Papaefthimiou D, Kapazoglou A, Tsaftaris AS (2012) Cloning and characterization of SOC1 homologs in barley (Hordeum vulgare) and their expression during seed development and in response to vernalization. Physiol Plant 146(1):71–85

    Article  PubMed  CAS  Google Scholar 

  • Parcy F (2005) Flowering: a time for integration. Int J Dev Biol 49(5–6):585–593

    Article  PubMed  Google Scholar 

  • Polidoros AN, Pasentsis K, Tsaftaris AS (2006) Rolling circle amplification-RACE: a method for simultaneous isolation of 5′ and 3′ cDNA ends from amplified cDNA templates. Biotechniques 41(1):35–36, 38, 40 passim

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    Google Scholar 

  • Sasani S, Hemming MN, Oliver SN, Greenup A, Tavakkol-Afshari R, Mahfoozi S, Poustini K, Sharifi HR, Dennis ES, Peacock WJ, Trevaskis B (2009) The influence of vernalization and daylength on expression of flowering-time genes in the shoot apex and leaves of barley (Hordeum vulgare). J Exp Bot 60(7):2169–2178

    Article  PubMed  CAS  Google Scholar 

  • Schauer SE, Schluter PM, Baskar R, Gheyselinck J, Bolanos A, Curtis MD, Grossniklaus U (2009) Intronic regulatory elements determine the divergent expression patterns of AGAMOUS-LIKE6 subfamily members in Arabidopsis. Plant J 59(6):987–1000

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12(8):352–357

    Article  PubMed  CAS  Google Scholar 

  • Tsaftaris A, Pasentsis K, Kalivas A, Michailidou S, Madesis P, Argiriou A (2012) Isolation of a CENTRORADIALIS/TERMINAL FLOWER1 homolog in saffron (Crocus sativus L.): characterization and expression analysis. Mol Biol Rep 39(8):7899–7910

    Article  PubMed  CAS  Google Scholar 

  • Tsaftaris A, Pasentsis K, Makris A, Darzentas N, Polidoros A, Kalivas A, Argiriou A (2011) The study of the E-class SEPALLATA3-like MADS-box genes in wild-type and mutant flowers of cultivated saffron crocus (Crocus sativus L.) and its putative progenitors. J Plant Physiol 168(14):1675–1684

    Article  PubMed  CAS  Google Scholar 

  • Tsaftaris A, Pasentzis K, Argiriou A (2009) Rolling circle amplification of genomic templates for inverse PCR (RCA-GIP): a method for 5′- and 3′-genome walking without anchoring. Biotechnol Lett.

  • Tsaftaris AS, Pasentsis K, Iliopoulos I, Polidoros AN (2004) Isolation of three homologous AP1-like MADS-box genes in crocus (Crocus sativus L.) and characterization of their expression. Plant Science 166:1235–1243

    Article  CAS  Google Scholar 

  • Tsaftaris AS, Polidoros AN, Pasentsis K, Kalivas A (2007) Cloning, structural characterization, and phylogenetic analysis of flower MADS-box genes from crocus (Crocus sativus L.). Sci World J 7:1047–1062

    Article  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309(5737):1056–1059

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yiannis Patsios for his help in collecting plant material in the field. Continuous support for the Institute of Applied Biosciences/CERTH from the General Secretariat of Research and Technology of Greece is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anagnostis Argiriou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsaftaris, A., Pasentsis, K. & Argiriou, A. Cloning and Characterization of FLOWERING LOCUS T-Like Genes from the Perennial Geophyte Saffron Crocus (Crocus sativus). Plant Mol Biol Rep 31, 1558–1568 (2013). https://doi.org/10.1007/s11105-013-0608-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0608-x

Keywords

Navigation