Skip to main content

Advertisement

Log in

Proteomic Analysis of Callus Development in Vanilla planifolia Andrews

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The orchid Vanilla planifolia has long been cultivated for its flavoured pods. Plant regeneration via an intermediary callus phase remains difficult, partially attributed to a low frequency of callus formation from various explants. In this study, a two-dimensional gel electrophoresis (2-DE) gel-based proteomic approach was taken to investigate the molecular mechanisms involved in callus formation and development. Protein extracts from 15-day-old callus with a mean weight of 20–30 mg (CS-1) and 45-day-old callus with a mean weight of 50–60 mg (CS-2) induced from nodal explants (NC) of V. planifolia were extracted and analysed using 2-DE. Protein spots detected on 2-D gels from NC, CS-1 and CS-2 were 265, 179 and 223 protein spots, respectively, with the majority being distributed across the isoelectric focusing point (pI) range of 5.0–6.9 and with molecular masses between 25–100 kDa. Of these, 73 protein spots showed significantly differential expression, and 23 proteins were successfully identified. The majority of proteins differing between nodal explants and callus tissues were classified as defence and stress response, metabolism, protein synthesis, transport, transcription, iron storage, photosynthesis and organ-specific proteins. The largest group of proteins identified were stress response proteins, indicating their effects on callus formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bian F, Zheng C, Qu F, Gong X, You C (2010) Proteomic analysis of somatic embryogenesis in Cyclamen persicum Mill. Plant Mol Biol Rep 28:22–31

    Article  CAS  Google Scholar 

  • Bouthour D, Hajjaji-Nasraoui A, Saafi L, Gouia H, Chaffei-Haouari C (2012) Effects of NaCl on growth and activity of enzymes involved in carbon metabolism in leaves of tobacco (Nicotiana rustica). Afr J Biotechnol 11(63):12619–12629

    Article  CAS  Google Scholar 

  • Briat J, Duc C, Ravet K, Gaymard F (2010) Ferritins and iron storage in plants. Biochim Biophys Acta 1800:806–814

    Article  PubMed  CAS  Google Scholar 

  • Bringans S, Eriksen S, Kendrick T, Gopalakrishnakone P, Livk A, Lock R, Lipscombe R (2008) Proteomic analysis of the venom of Heterometrus longimanus (Asian black scorpion). Proteomics 8:1081–1096

    Article  PubMed  CAS  Google Scholar 

  • Brownfield DL, Todd CD, Stone SL, Deyholos MK, Gifford DJ (2007) Patterns of storage protein and triacylglycerol accumulation during loblolly pine somatic embryo maturation. Plant Cell Tissue Organ Cult 88:217–223

    Article  CAS  Google Scholar 

  • Chang C, Chang WC (1998) Plant regeneration from callus culture of Cymbidium ensifolium var. misericors. Plant Cell Rep 17:251–255

    Article  CAS  Google Scholar 

  • Chen JT, Chang WC (2000) Efficient plant regeneration through somatic embryogenesis from callus cultures of Oncidium (Orchidaceae). Plant Sci 160:87–93

    Article  PubMed  CAS  Google Scholar 

  • Correia S, Vinhas R, Manadas B, Lourenco AS, Veríssimo P, Canhoto JM (2012) Comparative proteomic analysis of auxin-induced embryogenic and nonembryogenic tissue of the Solanaceous tree Cyphomandra betacea (Tamarillo). J Proteome Res 11:1666–1675

    Article  PubMed  CAS  Google Scholar 

  • Davidonis G, Knorr D (1991) Callus formation and shoot regeneration in Vanilla planifolia. Food Biotechnol 5(1):59–66

    Article  Google Scholar 

  • Fan M, Xu C, Xu K, Hu Y (2012) LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res 22:1169–1180

    Article  PubMed  CAS  Google Scholar 

  • Fortes A, Santos F, Choi YH, Silva MS, Figueiredo A, Sousa L, Pessoa F, Santos BA, Sebastiana M, Palme K, Malhó R, Verpoorte R, Pais MS (2008) Organogenic nodule development in hop (Humulus lupulus L.): transcript and metabolic responses. BMC Genomics 9:445

    Article  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowitz EM (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539–3548

    Article  PubMed  CAS  Google Scholar 

  • Griga M, Horáček J, Klenotičová H (2007) Protein patterns associated with Pisum sativum somatic embryogenesis. Biol Plant 51(2):201–211

    Article  CAS  Google Scholar 

  • Gu Z, Arditti J, Nyman LP (1987) Vanilla planifolia: callus induction and plantlet production in vitro. Lindleyana 2(1):48–52

    Google Scholar 

  • Holmes P, Farquharson R, Hall PJ, Rolfe BG (2006) Proteomic analysis of roots meristems and the effects of acetohydroxyacid synthase-inhibiting herbicides in the root of Medicago truncatula. J Proteome Res 5:2309–2316

    Article  PubMed  CAS  Google Scholar 

  • Huan LVT, Takamura T, Tanaka M (2004) Callus formation and plant regeneration from callus through somatic embryo structures in Cymbidium orchid. Plant Sci 166:1443–1449

    Article  CAS  Google Scholar 

  • Ishii Y, Takamura T, Goi M, Tanaka M (1998) Callus induction and somatic embryogenesis of Phalaenopsis. Plant Cell Rep 17:446–450

    Article  CAS  Google Scholar 

  • Ito H, Iwabuchi M, Ogawa K (2003) The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione. Plant Cell Physiol 44:655–660

    Article  PubMed  CAS  Google Scholar 

  • Janarthanam B, Seshadri S (2008) Plantlet regeneration from leaf derived callus of Vanilla planifolia Andr. In Vitro Cell Dev Biol-Plant 44:84–89

    Article  CAS  Google Scholar 

  • Kitamiya E, Suzuki S, Sano T, Nagata T (2000) Isolation of two genes that were induced upon the inititation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2,4-D. Plant Cell Rep 19:551–557

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Li K, Zhu W, Zeng K, Zhang Z, Ye I, Ou W, Rehman S, Heuer B, Chen S (2010) Proteome characterization of cassava (Manihot esculenta Crantz) somatic embryos, plantlets and tuberous roots. Proteome Sci 8:10–21

    Article  PubMed  CAS  Google Scholar 

  • Liu CW, Hsu YK, Cheng YH, Yen HC, Wu YP, Wang CS, Lai CC (2012) Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots. Rapid Commun Mass Spectrom 26:1649–1660

    Article  PubMed  CAS  Google Scholar 

  • Lu MC (2004) High frequency plant regeneration from callus culture of Pleione formosana Hayata. Plant Cell Tissue Organ Cult 78:93–96

    Article  CAS  Google Scholar 

  • Lu S, Friesen TL, Faris JD (2011) Molecular characterization and genomic mapping of the pathogenesis-related protein 1 (PR-1) gene family in hexaploid wheat (Triticum aestivum L.). Mol Genet Genomics 285:485–503

    Article  PubMed  CAS  Google Scholar 

  • Lyngved R, Renaut J, Hausman JF, Iversen TH, Hvoslef-Eide AK (2008) Embryo specific proteins in Cyclamen persicum analyzed with 2-D DIGE. J Plant Growth Reg 27:353–369

    Article  CAS  Google Scholar 

  • Marsoni M, Bracale M, Espen L, Prinsi B, Negri AS, Vannini C (2008) Proteomics analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Rep 27:347–356

    Article  PubMed  CAS  Google Scholar 

  • Mengesha A, Ayenew B, Gebremariam E, Tadesse T (2012) Micro-Propagation of Vanilla planifolia using Enset (Ensete ventricosum (Welw, cheesman)) starch as a gelling agent. Curr Res J Biol Sci 4(4):519–525

    Google Scholar 

  • Mirzaei M, Pascovici D, Atwell BJ, Haynes PA (2012) Differential regulation of aquaporins, small GTPases and V-ATPases proteins in rice leaves subjected to drought stress and recovery. Proteomics 12:864–877

    Article  PubMed  CAS  Google Scholar 

  • Mitsuhara I, Iwai T, Seo S, Yanagawa Y (2008) Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds (121/180). Mol Genet Genomics 279(4):415–427

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:173–197

    Article  Google Scholar 

  • Palama TL, Menard P, Fock I, Choi YH, Bourdon E, Govinden-Soulange J, Bahut M, Payet B, Verpoorte R, Kodja H (2010) Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage. BMC Plant Biol 10:82

    Article  PubMed  Google Scholar 

  • Pan Z, Guan R, Zhu S, Deng X (2009) Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Rep 28:281–289

    Article  PubMed  Google Scholar 

  • Rode C, Lindhorst K, Braun H, Winkelmann T (2012) From callus to embryo: a proteomic view on the development and maturation of somatic embryos in Cyclamen persicum. Planta 235:995–1011

    Article  PubMed  CAS  Google Scholar 

  • Roy J, Naha S, Majumdar M, Banerjee N (2007) Direct and callus-mediated protocorm-like body induction from shoot-tips of Dendrobium chrysotoxum Lindl. Plant Cell Tissue Organ Cult 90:31–39

    Article  CAS  Google Scholar 

  • Sallandrouze A, Faurobert M, Maataoui ME, Espagnac H (1999) Two-dimensional electrophoretic analysis of proteins associated with somatic embryogenesis development in Cupressus sempervirens L. Electrophoresis 20:1109–1119

    Article  PubMed  CAS  Google Scholar 

  • Sharathchandra RG, Stander C, Jacobson D, Ndimba B, Vivier MA (2011) Proteomic analysis of grape berry cell cultures reveals that developmentally regulated ripening related processes can be studied using cultured cells. PLoS One 6(2):e14708

    Article  PubMed  CAS  Google Scholar 

  • Sharifi G, Ebrahimzadeh H, Ghareyazie B, Gharechahi J, Vatankhah E (2012) Identification of differentially accumulated proteins associated with embryogenic and non-embryogenic calli in saffron (Crocus sativus L.). Proteome Sci 10:3

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K, Gordon SP, Meyerowitz EM (2011) Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol 21:212–218

    Article  PubMed  CAS  Google Scholar 

  • Tan BC, Chin CF, Alderson P (2011a) An improved plant regeneration of Vanilla planifolia Andrews. Plant Tissue Cult Biotechnol 21(1):27–33

    Google Scholar 

  • Tan BC, Chin CF, Alderson P (2011b) Optimisation of plantlet regeneration from leaf and nodal derived callus of Vanilla planifolia Andrews. Plant Cell Tissue Organ Cult 105:457–463

    Article  CAS  Google Scholar 

  • Tonietto A, Sato JH, Teixeira JB, de Souza EM, Pedrosa FO, Franco OL, Mehta A (2012) Proteomic analysis of developing somatic embryos of Coffea arabica. Plant Mol Biol Rep 30:1393–1399

    Article  CAS  Google Scholar 

  • Valledor L, Jorrín J (2011) Back to the basics: Maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. J Proteomics 74:1–18

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Vincent D, Wheatley MD, Cramer GR (2006) Optimization of protein extraction and solubilization for mature grape berry clusters. Electrophoresis 27:1853–1865

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Bai MY, Deng Z, Oses-Prieto JA, Burlingame AL, Lu T, Chong K, Wang ZY (2010) Proteomic study identifies proteins involved in brassinosteroid regulation of rice growth. J Integr Plant Biol 52:1075–1085

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Gao C, Zheng L, Liu G, Jiang J, Yang C (2012) Building an mRNA transcriptome from the shoots of Betula platyphylla by using Solexa technology. Tree Genet Genomes 8:1031–1040

    Article  Google Scholar 

  • Winkelmann T, Heintz D, Van Dorsselaer A, Serek M, Braun HP (2006) Proteomic analyses of somatic and zygotic embryos of Cyclamen persicum Mill. reveal new insights into seed and germination physiology. Planta 224:508–519

    Article  PubMed  CAS  Google Scholar 

  • Wright JC, Beynon RJ, Hubbard SJ (2010) Cross species proteomics. In: Hubbard SJ and Jones AR (eds) Proteome bioinformatics. Methods in molecular biology, vol 604. Humana. New York, pp 123–135

  • Yao YX, Dong QL, Zhai H, You CX, Hao YJ (2011) The functions of an apple cytosolic malate dehydrogenase gene in growth and tolerance to cold and salt stresses. Plant Physiol Biochem 49:257–264

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Yan F, Ji J, Li Y, Wang R, Xu C (2012) Proteomic analysis of Arabidopsis thaliana leaves infested by tobacco whitefly Bemisia tabaci (Gennadius) B biotype. Plant Mol Biol Rep 30:379–390

    Article  CAS  Google Scholar 

  • Yin L, Tao Y, Zhao K, Shao J, Li X, Liu G, Liu S, Zhu L (2007) Proteomic and transcriptomic analysis of rice mature seed-derived callus differentiation. Proteomics 7:755–768

    Article  PubMed  CAS  Google Scholar 

  • Yin L, Lan Y, Zhu L (2008) Analysis of the protein expression profiling during rice callus differentiation under different plant hormone conditions. Plant Mol Biol 68:597–617

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Xu L, Zhu X, Gong Y, Xiang F, Sun X, Liu L (2013) Proteomic analysis of heat stress response in leaves of Radish (Raphanus sativus L.). Plant Mol Biol Rep 31:195–203

    Article  Google Scholar 

  • Zhou S, Sauve R, Thannhauser TW (2009) Aluminum induced proteome changes in tomato cotyledons. Plant Signal Behavior 4(8):769–772

    Article  CAS  Google Scholar 

  • Zi J, Zhang J, Wang O, Lin L, Tong W, Bai X, Zhao J, Chen Z, Fu X, Liu S (2012) Proteomics study of rice embryogenesis: discovery of the embryogenesis-dependent globulins. Electrophoresis 33:1129–1138

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Liu C, Chen X (2011) Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice. Plant Cell Rep 30:2155–2165

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by eScience Fund from the Ministry of Science, Technology and Innovation and MyBrain15, Ministry of Higher Education, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiew Foan Chin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

The intensity of the selected protein spots from NC, CS-1 and CS-2 (JPEG 107 kb)

High resolution image (TIFF 324 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, B.C., Chin, C.F., Liddell, S. et al. Proteomic Analysis of Callus Development in Vanilla planifolia Andrews. Plant Mol Biol Rep 31, 1220–1229 (2013). https://doi.org/10.1007/s11105-013-0590-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0590-3

Keywords

Navigation