Skip to main content
Log in

Involvement of Ca2+ and CaM3 in Regulation of Thermotolerance in Lily (Lilium longiflorum)

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Involvement of calcium (Ca2+) and different calmodulin (CaM) isoforms in heat shock (HS) signal transduction in lily (Lilium longiflorum) was investigated in this study. Application of CaCl2 enhanced the thermotolerance of lily, whereas treatment with calcium ion chelator EGTA and CaM antagonist trifluoperazine (TFP) lowered the thermotolerance. Besides, HS-induced expression of LlHsf1 and LlHsfA2 genes were up-regulated by CaCl2 and down-regulated by EGTA or TFP. These findings implied that Ca2+–CaM were involved in HS signal transduction in lily via HSF pathway. Subsequently, five LlCaM genes encoding three canonical CaM isoforms were isolated and characterized, among which the LlCaM3 expression was induced by heat and CaCl2 and correlated positively with thermotolerance of lily. Additionally, transient expression analysis determined LlCaM3 to be a cytoplasm and nucleus protein. Furthermore, overexpression of LlCaM3 in Arabidopsis (Arabidopsis thaliana) increased the transcript level of AtHsfA1a and AtHsp18.2 following HS and improved the thermotolerance of transgenic plants. Taken together, the results suggest that LlCaM3 is a key component in Ca2+–CaM HS signaling pathway in lily and may be in the upstream of HSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Quraan NA, Locy RD, Singh NK (2010) Expression of calmodulin genes in wild type and calmodulin mutants of Arabidopsis thaliana under heat stress. Plant Physiol Bioch 48:697–702

    Article  CAS  Google Scholar 

  • Al-Whaibi MH (2011) Plant heat-shock proteins: a mini review. J King Saud University 23:139–150

    Article  Google Scholar 

  • Bouche N, Yellin A, Snedden WA, Fromm H (2005) Plant specific calmodulin-binding proteins. Annu Rev Plant Biol 56:435–466

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Fang RJ, Hu DQ, Zhang YH, Li R, Zhao WG (2011) Sequence analysis and expression of the calmodulin gene, MCaM-3, in mulberry (Morus L.). Genes Genom 33:97–103

    Article  CAS  Google Scholar 

  • Fu WD, Li S, Yao SH, Yu FL, Duan DL (2010) Molecular cloning and analysis of a cytosolic Hsp70 Gene from Enteromorpha prolifera (Ulvophyceae, Chlorophyta). Plant Mol Biol Rep 28:430–437

    Article  CAS  Google Scholar 

  • Gong M, Li YJ, Dai X, Tian M, Li ZG (1997) Involvement of calcium and calmodulin in the acquisition of heat-shock induced thermotolerance in maize seedlings. J Plant Physiol 150:615–621

    Article  CAS  Google Scholar 

  • Gong M, van der Luit AH, Knight MR, Trewavas AJ (1998) Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol 116:429–437

    Article  CAS  Google Scholar 

  • Hashimoto K, Kudla J (2011) Calcium decoding mechanisms in plants. Biochimie 93:2054–2059

    Article  PubMed  CAS  Google Scholar 

  • Kim MC, Chung WS, Yun DJ, Cho MJ (2009) Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant 2:13–21

    Article  PubMed  CAS  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Doering P, Vierling E, Scharf K-D (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  PubMed  CAS  Google Scholar 

  • Li B, Liu HT, Mu RL, Sun DY, Zhou RG (2003) Effects of calmodulin on DNA-binding activity of heat shock transcription factor in vitro. Chinese Sci Bull 48:255–258

    CAS  Google Scholar 

  • Li B, Liu HT, Sun DY, Zhou RG (2004) Ca2+ and calmodulin modulate DNA-binding activity of maize heat shock transcription factor in vitro. Plant Cell Physiol 45:627–634

    Article  PubMed  CAS  Google Scholar 

  • Liu HT, Gao F, Li GL, Han JL, Lian DL, Sun DY, Zhou RG (2008) The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J 55:760–773

    Article  PubMed  CAS  Google Scholar 

  • Liu HT, Li GL, Chang H, Sun DY, Zhou RG, Li B (2007) Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ 30:156–164

    Article  PubMed  CAS  Google Scholar 

  • Liu HT, Gao F, Cui SJ, Han JL, Sun DY, Zhou RG (2006) Primary evidence for involvement of IP3 in heat-shock signal transduction in Arabidopsis. Cell Res 16:394–400

    Article  PubMed  CAS  Google Scholar 

  • Liu HT, Li B, Shang ZL, Li XZ, Mu RL, Sun DY, Zhou RG (2003) Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol 132:1186–1195

    Article  PubMed  CAS  Google Scholar 

  • Liu HT, Sun DY, Zhou RG (2005) Ca2+ and AtCaM3 are involved in the expression of heat shock protein gene in Arabidopsis. Plant Cell Environ 28:1276–1284

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lohmann C, Eggers-Schumacher G, Wunderlich M, Schoffl F (2004) Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol Genet Genomics 271:376–376

    Article  CAS  Google Scholar 

  • Luan S (2009) The CBL-CIPK network in plant calcium signaling. Trends Plant Sci 14:37–42

    Article  PubMed  CAS  Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14:S389–S400

    PubMed  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot-London 78:389–398

    Article  CAS  Google Scholar 

  • Ma LG, Xu XD, Cui SJ, Sun DY (1999) The presence of a heterotrimeric G protein and its role in signal transduction of extracellular calmodulin in pollen germination and tube growth. Plant Cell 11:1351–1363

    PubMed  CAS  Google Scholar 

  • McCormack E, Tsai YC, Braam J (2005) Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci 10:383–389

    Article  PubMed  CAS  Google Scholar 

  • Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HSfA1 has a unique role as master regulator of thermotolerance in tomato. Gene Dev 16:1555–1567

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Doring P (2006) The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol 60:759–772

    Article  PubMed  CAS  Google Scholar 

  • Sun XT, Li B, Zhou GM, Tang WQ, Bai J, Sun DY, Zhou RG (2000) Binding of the maize cytosolic Hsp70 to calmodulin, and identification of calmodulin-binding site in Hsp70. Plant Cell Physiol 41:804–810

    Article  PubMed  CAS  Google Scholar 

  • van der Luit AH, Olivari C, Haley A, Knight MR, Trewavas AJ (1999) Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol 121:705–714

    Article  Google Scholar 

  • Vierling E (1991) The roles of heat-shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  • Virdi AS, Pareek A, Singh P (2011) Evidence for the possible involvement of calmodulin in regulation of steady state levels of Hsp90 family members (Hsp87 and Hsp85) in response to heat shock in sorghum. Plant Signal Behav 6:393–399

    Article  PubMed  CAS  Google Scholar 

  • von Koskull-Doering P, Scharf KD, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457

    Article  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang GL, Fang HY (2002) Gene engineering in plant, 2nd ed. Press of Science, Beijing, pp 734–736

  • Wu HC, Luo DL, Vignols F, Jinn TL (2012) Heat shock-induced biphasic Ca2+ signature and OsCaM1-1 nuclear localization mediate downstream signalling in acquisition of thermotolerance in rice (Oryza sativa L.). Plant Cell Environ 35:1543–1557

    Article  PubMed  CAS  Google Scholar 

  • Xin HB, Zhang H, Chen L, Li XX, Lian QL, Yuan X, Hu XY, Cao L, He XL, Yi MF (2010) Cloning and characterization of HsfA2 from lily (Lilium longiflorum). Plant Cell Rep 29:875–885

    Article  PubMed  CAS  Google Scholar 

  • Yang TB, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Chen Q, Yi MF (2008) Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regul 54:45–54

    Article  CAS  Google Scholar 

  • Zhang SX, Xu ZX, Li PS, Yang L, Wei YQ, Chen M, Li LC, Zhang GS, Ma YZ (2012) Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures. Plant Mol Biol Rep. doi:10.1007/s11105-012-0546-z

    Google Scholar 

  • Zhang W, Zhou RG, Gao YJ, Zheng SZ, Xu P, Zhang SQ, Sun DY (2009) Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol 149:1773–1784

    Article  PubMed  CAS  Google Scholar 

  • Zhou RG, Li B, Liu HT, Sun DY (2009) Progress in the participation of Ca2+-calmodulin in heat shock signal transduction. Prog Nat Sci 19:1201–1208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation (no. 30972024) and the “948” project (no. 2011-G17) from Ministry of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingfang Yi.

Additional information

Xing Cao and Jin Yi contribute to this work equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Yi, J., Wu, Z. et al. Involvement of Ca2+ and CaM3 in Regulation of Thermotolerance in Lily (Lilium longiflorum). Plant Mol Biol Rep 31, 1293–1304 (2013). https://doi.org/10.1007/s11105-013-0587-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0587-y

Keywords

Navigation