Skip to main content
Log in

Overexpression of the Tomato 13-Lipoxygenase Gene TomloxD Increases Generation of Endogenous Jasmonic Acid and Resistance to Cladosporium fulvum and High Temperature

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Expression of the tomato gene encoding 13-lipoxygenase,TomloxD, is stimulated by wounding, pathogen infection, jasmonate, and systemin, but its role during growth and development of tomato (Lycopersicon Spp.) remains unclear. To assess the physiological role of TomloxD, we produced transgenic tomato plants with greatly increased TomloxD content using sense constructs under the control of the CaMV 35S promoter. Overexpression of TomloxD in transgenic tomatoes led to a marked increase in the levels of lipoxygenase activity and content of endogenous jasmonic acid (JA), which suggested that TomloxD can use α-linolenic acid as a substrate to produce (13S)-hydroperoxyoctadecatrienoic acid (13-HPOT); the 13-HPOT produced appears to be metabolized further to synthesize JA. Real-time RT-PCR revealed that the expression levels of defense genes LeHSP90, LePR1, LePR6 and LeZAT in the transformants were higher than those in non-transformed plants. Assay for resistance to pathogenic fungus and high temperature stresses suggested that transgenic plants harboring TomloxD were more tolerant to Cladosporium fulvum and high temperature stress than non-transformed tomato plants. The data presented here indicate clearly that TomloxD is involved in endogenous JA synthesis and tolerance to biotic and abiotic stress. The tomloxD gene has potential applications in engineering cropping plants that are resistant to biotic and/or abiotic stress factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 a–c
Fig. 4
Fig. 5 a,b
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ET:

Ethylene

GC-MS:

Gas chromatograph-mass spectrometer

HPOD:

Hydroperoxy-octadecadienoic acid

HPOT:

Hydroperoxyoctadecatrienoic acid

HR:

Hypersensitive response

Hsp:

Heat shock proteins

JA:

Jasmonic acid

JAME:

Methyl-jasmonic acid

LeA:

Linolenic acid

LOX:

Lipoxygenase

PBS:

Phosphate-buffered saline

PR:

Pathogenesis-related

PUFA:

Polyunsaturated fatty acid

SA:

Salicylic acid

SAR:

Systemic acquired resistance

References

  • Acosta IF, Laparra H, Romero SP, Schmelz E, Hamberg M, Mottinger JP, Moreno MA, Dellaporta SL (2009) tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323:262–265

    Article  PubMed  CAS  Google Scholar 

  • Ahl Goy P, Cornu A, Gianinazzi S (1982) Soluble proteins as genetic markers in studies of resistance and phylogeny in Nicotiana. Phytopathology 72:80–85

    Article  Google Scholar 

  • Andreou A, Feussner I (2009) Lipoxygenases—structure and reaction mechanism. Phytochemistry 70:1504–1510

    Article  PubMed  CAS  Google Scholar 

  • Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48:148–170

    Article  PubMed  CAS  Google Scholar 

  • Axelrod B, Cheesbrough TM, Laasko S (1981) Lipoxygenase from soybeans. Methods Enzymol 71:441–451

    Article  CAS  Google Scholar 

  • Baldwin IT, Zhang ZP, Diab N, Ohnmeiss TE, McCloud ES, Lynds GY, Schmelz EA (1997) Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta 201:397–404

    Article  CAS  Google Scholar 

  • Balint-Kurti PJ, Dixon MS, Jones DA, Norcott KA, Jones JDG (1994) RFLP linkage analysis of the Cf-4 and Cf-9 genes for resistance to Cladosporium fulvum in tomato. Theor Appl Genet 88:691–700

    Article  CAS  Google Scholar 

  • Bird CR, Smith CJS, Ray JA, Moureau P, Bevan MW, Bird AS, Hughes S, Morris PC, Grierson D, Schuch W (1988) The tomato polygalacturonase gene and ripening-specific expression in transgenic plants. Plant Mol Biol 11:651–662

    Article  CAS  Google Scholar 

  • Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Hackett R, Walker D, Taylor A, Lin Z, Grierson D (2004) Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiol 136:2641–2651

    Article  PubMed  CAS  Google Scholar 

  • Csermely P, Schnaider T, Soti C, Prohászka Z, Nardai G (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129–168

    Article  PubMed  CAS  Google Scholar 

  • Edreva A (2005) Pathogenesis-related proteins: research progress in the last 15 years. Gen Appl Plant Physiol 31:105–124

    CAS  Google Scholar 

  • Feussner I, Wasternack C (2002) Lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  PubMed  CAS  Google Scholar 

  • Fischer AM, Dubbs WE, Baker RA, Fuller MA, Stephenson LC, Grimes HD (1999) Protein dynamics, activity and cellular localization of soybean lipoxygenases indicate distinct functional roles for individual isoforms. Plant J 19:543–554

    Article  PubMed  CAS  Google Scholar 

  • Griffiths A, Barry C, Alpuche-Solis AG, Grierson D (1999) Ethylene and developmental signals regulate expression of lipoxygenase genes during tomato fruit ripening. J Exp Bot 50:793–798

    CAS  Google Scholar 

  • Halitschke R, Ziegler J, Keinänen M, Baldwin IT (2004) Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signaling crosstalk in Nicotiana attenuate. Plant J 40:35–46

    Article  PubMed  CAS  Google Scholar 

  • Hayashi S, Gresshoff PM, Kinkema M (2008) Molecular analysis of lipoxygenases associated with nodule development in soybean. Mol Plant Microbe Interact 21:843–853

    Article  PubMed  CAS  Google Scholar 

  • He S, Tan L, Hu Z, Chen G, Wang G, Hu T (2012) Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L. Mol Genet Genom 287:39–54

    Article  CAS  Google Scholar 

  • Heitz T, Bergey DR, Ryan CA (1997) A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate. Plant Physiol 114:1085–1093

    Article  PubMed  CAS  Google Scholar 

  • Höfgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  PubMed  Google Scholar 

  • Howe GA, Schilmiller AL (2002) Oxylipin metabolism in response to stress. Curr Opin Plant Biol 5:230–236

    Article  PubMed  CAS  Google Scholar 

  • Hu T, Qv X, Hu Z, Chen G, Chen Z (2011) Expression, molecular characterization and detection of lipoxygenase activity of tomloxD from tomato. Afr J Biotechnol 10:490–498

    CAS  Google Scholar 

  • Hwang IS, Hwang BK (2010) The pepper 9-lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. Plant Physiol 152:948–967

    Article  PubMed  CAS  Google Scholar 

  • Kitajima S, Sato F (1999) Plant pathogenesis-related proteins: molecular mechanisms of gene expression and protein function. J Biochem 125:1–8

    Article  PubMed  CAS  Google Scholar 

  • Kolomiets MV, Hannapel DJ, Chen H, Tymeson M, Gladon RJ (2001) Lipoxygenase is involved in the control of potato tuber development. Plant Cell 13:613–626

    PubMed  CAS  Google Scholar 

  • Li ST, Zhang M, Fu CH, Xie S, Zhang Y, Yu LJ (2012) Molecular cloning and characterization of two 9-Lipoxygenase genes from Taxus chinensis. Plant Mol Biol Rep 30:1283–1290

    Article  CAS  Google Scholar 

  • Liavonchanka A, Feussner I (2006) Lipoxygenases: occurrence, functions and catalysis. J Plant Physiol 163:348–357

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Han B (2010) Differential expression pattern of an acidic 9/13-lipoxygenase in flower opening and senescence and in leaf response to phloem feeders in the tea plant. BMC Plant Biol 10:228–242

    Article  PubMed  Google Scholar 

  • Loiseau J, Vu BL, Macherel MH, Le Deunff Y (2001) Seed lipoxygenases: occurrence and functions. Seed Sci Res 11:199–211

    CAS  Google Scholar 

  • Løvdal T, Lillo C (2009) Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal Biochem 387:238–242

    Article  PubMed  Google Scholar 

  • Lu X, Lin XY, Shen Q, Zhang FY, Wang YY, Chen YF, Wang T, Wu SY, Tang KX (2011) Characterization of the jasmonate biosynthetic gene allene oxide cyclase in Artemisia annua L., source of the antimalarial drug artemisinin. Plant Mol Biol Rep 29:489–497

    Article  CAS  Google Scholar 

  • Mariutto M, Duby F, Adam A, Bureau C, Fauconnier ML, Ongena M, Thonart P, Dommes J (2011) The elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms. BMC Plant Biol 11:29

    Article  PubMed  CAS  Google Scholar 

  • Palmieri-Thiers C, Canaan S, Brunini V, Lorenzi V, Tomi F, Desseyn JL, Garscha U, Oliw EH, Berti L, Maury J (2009) A lipoxygenase with dual positional specificity is expressed in olives (Olea europaea L.) during ripening. Biochim Biophys Acta 1791:339–346

    Article  PubMed  CAS  Google Scholar 

  • Park YS, Kunze S, Ni X, Feussner I, Kolomiets MV (2010) Comparative molecular and biochemical characterization of segmentally duplicated 9-lipoxygenase genes ZmLOX4 and ZmLOX5 of maize. Planta 231:1425–1437

    Article  PubMed  CAS  Google Scholar 

  • Rudolph M, Schlereth A, Körner M, Feussner K, Berndt E, Melzer M, Hornung E, Feussner I (2011) The lipoxygenase-dependent oxygenation of lipid body membranes is promoted by a patatin-type phospholipase in cucumber cotyledons. J Exp Bot 62:749–760

    Article  PubMed  CAS  Google Scholar 

  • Siedow JN (1991) Plant lipoxygenase—structure and function. Annu Rev Plant Physiol Plant Mol Biol 42:145–188

    Article  CAS  Google Scholar 

  • van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    Article  PubMed  Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Veronico P, Giannino D, Melillo MT, Leone A, Reyes A, Kennedy MW, Bleve-Zacheo T (2006) A novel lipoxygenase in pea roots. Its function in wounding and biotic stress. Plant Physiol 141:1045–1055

    Article  PubMed  CAS  Google Scholar 

  • Vicente J, Cascón T, Vicedo B, García-Agustín P, Hamberg M, Castresana C (2012) Role of 9-lipoxygenase and α-dioxygenase oxylipin pathways as modulators of local and systemic defense. Mol Plant 5:914–928

    Article  PubMed  CAS  Google Scholar 

  • Vick BA, Zimmerman DC (1987) Pathways of fatty acid hydroperoxide metabolism in spinach leaf chloroplasts. Plant Physiol 85:1073–1078

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Shen W, Liu L, Jiang L, Liu Y, Su N, Wan J (2008) A novel lipoxygenase gene from developing rice seeds confers dual position specificity and responds to wounding and insect attack. Plant Mol Biol 66:401–414

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, Maucher H, Neumerkel J, Feussner I, Miersch O (2006) The wound response in tomato—role of jasmonic acid. J Plant Physiol 163:297–306

    Article  PubMed  CAS  Google Scholar 

  • Zhou G, Qi J, Ren N, Cheng J, Erb M, Mao B, Lou Y (2009) Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant J 60:638–648

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (31000911 and 31171968), and “Chun Hui Project” Foundation of Education Ministry of China (Z2008-1-63004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, T., Zeng, H., Hu, Z. et al. Overexpression of the Tomato 13-Lipoxygenase Gene TomloxD Increases Generation of Endogenous Jasmonic Acid and Resistance to Cladosporium fulvum and High Temperature. Plant Mol Biol Rep 31, 1141–1149 (2013). https://doi.org/10.1007/s11105-013-0581-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0581-4

Keywords

Navigation