Skip to main content
Log in

LtuCAD1 Is a Cinnamyl Alcohol Dehydrogenase Ortholog Involved in Lignin Biosynthesis in Liriodendron tulipifera L., a Basal Angiosperm Timber Species

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis and catalyzes the final step in the synthesis of monolignols. Seven CAD homologs (LtuCAD1 to LtuCAD7) have been previously identified from a basal angiosperm species Liriodendron tulipifera L., which is an important timber tree species with significant ecological and economic values. The phylogenetic analysis indicates that LtuCAD1 is the only Liriodendron CAD grouped with the bona fide CADs, the primary CAD genes involved in lignification. In this study, the predicted protein sequence of LtuCAD1 was found to have conserved domains and the same key determinant site with the bona fide CADs in other plant species. Additionally, LtuCAD1 had the highest expression level in xylem as revealed by quantitative RT-PCR analysis. The expression of beta-glucuronidase (GUS) driven by the LtuCAD1 promoter was largely localized in vascular tissues in Arabidopsis. In stem cross sections, GUS staining was found exclusively in xylem and phloem. When expressed in the Arabidopsis cad4 cad5 double mutant, LtuCAD1 was able to restore the total lignin content and decrease the S/G lignin ratio. Our data indicate that LtuCAD1 is a CAD ortholog involved in lignin biosynthesis in Liriodendron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201

    Article  PubMed  CAS  Google Scholar 

  • Baker AJ (1983) Wood fuel properties and fuel products from woods. In: Fuel wood management and utilization seminar. Michigan State University, East Lansing, pp 14–25

    Google Scholar 

  • Bateman RM, Crane PR, DiMichele WA, Kenrick PR, Rowe NP, Speck T, Stein WE (1998) Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Ann Rev Ecol Syst 29:263–292

    Article  Google Scholar 

  • Baucher M, Chabbert B, Pilate G, van Doorsselaere J, Tollier MT, Petit-Conil M, Cornu D, Monties B, Van Montagu M, Inze D, Jouanin L, Boerjan W (1996) Red xylem and higher lignin extractability by down-regulating cinnamyl alcohol dehydrogenase in poplar (Populus tremula and Populus alba). Plant Physiol 112:1479–1490

    PubMed  CAS  Google Scholar 

  • Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38:305–350

    Google Scholar 

  • Berlin A, Gilkes N, Kilburn D, Maximenko V, Bura R, Markov A, Skomarovsky A, Okunev O, Gusakov A, Gregg D, Sinitsyn A, Saddler J (2006) Evaluation of cellulase preparations for hydrolysis of hardwood substrates. Appl Biochem Biotechnol 129:528–545

    Article  PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Bomati EK, Noel JP (2005) Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase. Plant Cell 17:1598–1611

    Article  PubMed  CAS  Google Scholar 

  • Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Görlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    PubMed  CAS  Google Scholar 

  • Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14

    Article  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  PubMed  CAS  Google Scholar 

  • Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123:895–904

    Article  PubMed  CAS  Google Scholar 

  • Eudes A, Pollet B, Sibout R, Do C-T, Séguin A, Lapierre C, Jouanin L (2006) Evidence for a role of AtCAD1 in lignification of elongating stems of Arabidopsis thaliana. Planta 225:23–39

    Article  PubMed  CAS  Google Scholar 

  • Fornaléa S, Capelladesa M, Encinab A, Wangc K, Irara S, Lapierre C, Ruele K, Joseleaue JP, Berenguera J, Puigdomènecha P, Rigaua J, Caparrós-Ruiza D (2012) Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase. Mol Plant 5:817–830

    Article  Google Scholar 

  • Harlow WM, Harrar ES (1969) Textbook of dendrology. McGraw-Hill, New York, p 512

    Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci 94:2122–2127

    Article  PubMed  CAS  Google Scholar 

  • Hunt D (1998) Magnolias and their allies. International Dendrology Society & Magnolia Society, England, p 304

  • Hwang SS, Lee SJ, Kim HK, Ka JO, Kim KJ, Song HG (2008) Biodegradation and saccharification of wood chips of Pinus strobus and Liriodendron tulipifera by white rot fungi. J Microbiol Biotechnol 18:1819–1826

    PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Report 5:387–405

    Article  CAS  Google Scholar 

  • Jiao J, Wickett N, Ayyampalayam S, Chanderbali A, Landherr L, Ralph PE, Tomsho LP, Liang H, Soltis PS, Soltis DE, Clifton SE, Schlarblum SE, Shuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Phylogenomic detection of ancient polyploidy in seed plants and angiosperms. Nature 473:97–100

    Article  PubMed  CAS  Google Scholar 

  • Jin J, Do J, Moon D, Noh EW, Kim W, Kwon M (2011) EST analysis of functional genes associated with cell wall biosynthesis and modification in the secondary xylem of the yellow poplar (Liriodendron tulipifera) stem during early stage of tension wood formation. Planta 234:959–977

    Article  PubMed  CAS  Google Scholar 

  • Johnson TG, Bentley JW, Howell M (2011) The South’s timber industry—an assessment of timber product output and use, 2009. Department of Agriculture Forest Service, Southern Research Station, Asheville, p 44, Resour Bull SRS–182

    Google Scholar 

  • Kajita S, Katayama Y, Omori S (1996) Alterations in the biosynthesis of lignin in transgenic plants with chimeric genes for 4-coumarate:coenzyme A ligase. Plant Cell Physiol 37:957–965

    Article  PubMed  CAS  Google Scholar 

  • Kim KD, Lee EJ (2005) Potential tree species for use in the restoration of unsanitary landfills. Environ Manag 36:1–14

    Article  Google Scholar 

  • Kim SJ, Kim MR, Bedgar DL, Moinuddin SGA, Cardenas CL, Davin LB, Kang C, Lewis NF (2004) Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc Natl Acad Sci 101:1455–1460

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Kim KW, Cho MH, Franceschi VR, Davin LB, Lewis NG (2007) Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotations? Phytochem 68:1957–1974

    Article  CAS  Google Scholar 

  • Lafayette PR, Eriksson KE, Dean JF (1999) Characterization and heterologous expression of laccase cDNAs from the lignifying xylem of yellow-poplar (Liriodendron tulipifera). Plant Mol Biol 40:23–35

    Article  PubMed  CAS  Google Scholar 

  • Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leple JC, Boerjan W, Ferret V, De Nadai V, Jouanin L (1999) Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol 119:153–163

    Article  PubMed  CAS  Google Scholar 

  • Larionov A, Krause A, Miller W (2005) A standard curve based method for relative real time PCR data processing. BMC Bioinforma 6:62

    Article  Google Scholar 

  • Li X, Weng J-K, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Ayyampalayam S, Wickett N, Barakat A, Xu Y, Landherr L, Ralph P, Xu T, Schlarbaum SE, Leebens-Mack JH, dePamphilis CW (2011) Generation of a large-scale genomic resource for functional and comparative genomics in Liriodendron. Tree Genet Genomes 7:941–954

    Article  Google Scholar 

  • Novaes E, Osorio L, Drost DR, Miles BL, Boaventura-Novaes CRD, Benedict C, Dervinis C, Yu Q, Sykes R, Davis M, Martin TA, Peter GF, Kirst M (2009) Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytol 182:878–890

    Article  PubMed  CAS  Google Scholar 

  • Persson B, Zigler JS, Jörnvall H (1994) A super-family of medium-chain dehydrogenases/reductases (MDR). Sub-lines including ζ-crystallin, alcohol and polyol dehydrogenases, quinone oxidoreductases, enoyl reductases, VAT-1 and other proteins. Eur J Biochem 226:15–22

    Article  PubMed  CAS  Google Scholar 

  • Pilate G, Guieny E, Holt K, Petit-Conil M, Lapierre C, Leple JC, Pollet B, Mila I, Webster EA, Marstorp G et al (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612

    Article  PubMed  CAS  Google Scholar 

  • Rao ST, Rossmann MG (1973) Comparison of super-secondary structures in proteins. J Mol Biol 76:241–256

    Article  PubMed  CAS  Google Scholar 

  • Ronse de Craene L, Soltis DE, Soltis PS (2003) Evolution of floral structures in basal angiosperms. Int J Plant Sci 164:S329–S363

    Article  Google Scholar 

  • Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W (2009) A genomewide analysis of the cinnamyl alcohol dehydrogenase family in Sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the Brown midrib6 gene. Genetics 181:783–795

    Article  PubMed  CAS  Google Scholar 

  • Sibout R, Eudes A, Pollet B, Goujon T, Mila I, Granier F, Séguin A, Lapierre C, Jouanin L (2003) Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis: isolation and characterization of the corresponding mutants. Plant Physiol 132:848–860

    Article  PubMed  CAS  Google Scholar 

  • Sibout R, Eudes A, Mouilleb G, Polletc B, Lapierre C, Jouaninb L, Séguin A (2005) CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17:2059–2076

    Article  PubMed  CAS  Google Scholar 

  • Solovyev VV, Shahmuradov IA (2003) PromH: promoters identification using orthologous genomic sequences. Nucleic Acids Res 31:3540–3545

    Article  PubMed  CAS  Google Scholar 

  • Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102–1104

    PubMed  CAS  Google Scholar 

  • Sykes R, Kodrzycki B, Tuskan G, Foutz K, Davis M (2008) Within tree variability of lignin composition in Populus. Wood Sci Technol 42:649–661

    Article  CAS  Google Scholar 

  • Tavares R, Aubourg S, Lecharny A, Kreis M (2000) Organization and structural evolution of four multigene families in Arabidopsis thaliana: AtLCAD, AtLGT, AtMYST and AtHD-GL2. Plant Mol Biol 42:703–717

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerja W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  PubMed  CAS  Google Scholar 

  • Weng JK, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285

    Article  PubMed  CAS  Google Scholar 

  • Williams RS, Feist WC (2004) Durability of yellow-poplar and sweetgum and service life of finishes after long-term exposure. For Prod J 54:96–101

    Google Scholar 

  • Xu Z, Zhang D, Hu J, Zhou X, Ye X, Reichel KL, Stewart NR, Syrenne RD, Yang X, Gao P, Shi W, Doeppke C, Sykes RW, Burris JN, Bozell JJ, Cheng ZM, Hayes DG, Labbe N, Davis M, Stewart CN, Yuan JS (2009) Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinforma 10(Suppl 11):S3

    Article  Google Scholar 

  • Xu Y, Schlarbaum SE, Liang H (2011) Investigation of genome structure of a cinnamyl alcohol dehydrogenase locus in a basal angiosperm hardwood species, Liriodendron tulipifera L., reveals low synteny. J Syst Evol 9:396–405

    Article  Google Scholar 

  • Youn B, Camacho R, Moinuddin SGA, Lee C, Davin LB, Lewis NG, Kang C (2006) Crystal structures and catalytic mechanism of the Arabidopsis cinnamyl alcohol dehydrogenases AtCAD5 and AtCAD4. Org Biomol Chem 4:1687–1697

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Armand Séguina (Canadian Forest Service’s Laurentian Forestry Centre) and Dr. Richard Sibout (University of Lausanne, Switzerland) for providing the cad c cad d Arabidopsis double mutant plants and Dr. Chung-Jui Tsai at University of Georgia for her assistance with the PyMBMS analysis. This study was supported by a National Institute of Food and Agriculture/USDA grant (project number SC-1700324, technical contribution No. 6061 of the Clemson University Experiment Station) and an investment award provided by Clemson University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiying Liang.

Electronic Supplementary Material

ESM 1

(DOCX 1073 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Thammannagowda, S., Thomas, T.P. et al. LtuCAD1 Is a Cinnamyl Alcohol Dehydrogenase Ortholog Involved in Lignin Biosynthesis in Liriodendron tulipifera L., a Basal Angiosperm Timber Species. Plant Mol Biol Rep 31, 1089–1099 (2013). https://doi.org/10.1007/s11105-013-0578-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0578-z

Keywords

Navigation