Plant Molecular Biology Reporter

, Volume 31, Issue 2, pp 335–343 | Cite as

Dynamic Regulation of Novel and Conserved miRNAs Across Various Tissues of Diverse Cucurbit Species

  • Sumanth Manohar
  • Guru Jagadeeswaran
  • Padma Nimmakayala
  • Yan Tomason
  • Aldo Almeida
  • Ramanjulu Sunkar
  • Amnon Levi
  • Umesh K. Reddy
Original Paper


MicroRNA genes (miRNAs) encoding small non-coding RNAs are abundant in plant genomes and play a key role in regulating several biological mechanisms. Five conserved miRNAs, miR156, miR168-1, miR168-2, miR164, and miR166 were selected for analysis from the 21 known plant miRNA families that were recovered from deep sequencing data of small RNA libraries of pumpkin and squash. A total of six novel miRNAs that were not reported before were found to have precursors with reliable fold-back structures and hence considered novel and were designated as cuc_nov_miRNAs. A set of five conserved, six novel miRNAs, and five uncharacterized small RNAs from the deep sequencing data were profiled for their dynamic regulation using qPCR. The miRNAs were evaluated for differential regulation across the tissues among four diverse cucurbit species, including pumpkin and squash (Cucurbita moschata Duch. Ex Poir. and Cucurbita pepo L.), bitter melon (Momordica charantia L.), and Luffa (Loofah) (Luffa acutangula Roxb.). Expression analysis revealed differential regulation of various miRNAs in leaf, stem, and fruit tissues. Importantly, differences in the expression levels were also found in the leaves and fruits of closely related C. moschata and C. pepo. Comparative miRNA profiling and expression analysis in four cucurbits led to identification of conserved miRNAs in cucurbits. Predicted targets for two of the conserved miRNAs suggested miRNAs are involved in regulating similar biological mechanisms in various species of cucurbits.


miRNA regulation qRT PCR microRNAs Cucurbits 



The authors are grateful to Dr. Jarret, Plant Genetic Resources Conservation Unit, USDA-ARS, Griffin, GA, 30223 for providing the seeds of germplasm accessions. Funding support is provided by NSF-EPSCOR no. 1003907, Gus R. Douglass Institute, and USDA-NIFA Research (2010-38821-21476).

Supplementary material

11105_2012_506_Fig4_ESM.jpg (45 kb)
Supplementary Fig. 1

Heatmap of expression profiles of conserved miRNAs in leaf, stem, flesh, rind, and placenta of various cucurbit species. The color white to light blue to dark blue to black represents the gradation of scale of relative miRNA expression (log2). (JPEG 44 kb)

11105_2012_506_MOESM1_ESM.tif (127.6 mb)
High-resolution image (TIFF 130628 kb)
11105_2012_506_Fig5_ESM.jpg (46 kb)
Supplementary Fig. 2

Heatmap of expression profiles of novel miRNAs in leaf, stem, flesh, rind, and placenta of various cucurbit species. The color white to light blue to dark blue to black represents the gradation of scale of relative miRNA expression (log2). (JPEG 46 kb)

11105_2012_506_MOESM2_ESM.tif (113.2 mb)
High-resolution image (TIFF 115967 kb)
11105_2012_506_Fig6_ESM.jpg (44 kb)
Supplementary Fig. 3

Heatmap of expression profiles of small RNAs in leaf, stem, flesh, rind, and placenta of various cucurbit species. The color white to light blue to dark blue to black represents the gradation of scale of relative miRNA expression (log2). (JPEG 43 kb)

11105_2012_506_MOESM3_ESM.tif (125.6 mb)
High-resolution image (TIFF 128602 kb)


  1. Abdel-Ghany S, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945PubMedCrossRefGoogle Scholar
  2. Bartel D (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  3. Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development? Plant Physiol 132:709–717. doi: 10.1104/pp. 103.023630 PubMedCrossRefGoogle Scholar
  4. Borsani O, Zhu J, Verslues P, Sunkar R, Zhu J (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulates salt tolerance in Arabidopsis. Cell 123:1279–1291PubMedCrossRefGoogle Scholar
  5. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto Y, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190PubMedCrossRefGoogle Scholar
  6. Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442. doi: 10.1105/tpc.110.082784 PubMedCrossRefGoogle Scholar
  7. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2(2):e219. doi: 10.1371/journal.pone.0000219 PubMedCrossRefGoogle Scholar
  8. Fujii H, Chiou T-J, Lin S-I, Aung K, Zhu J-K (2005) A miRNA involved in phosphate-starvation response in arabidopsis. Curr Biol 15:2038–2043PubMedCrossRefGoogle Scholar
  9. Gazzani S, Li M, Maistri S, Scarponi E, Graziola M, Barbaro E, Wunder J, Furini A, Saedler H, Varotto C (2009) Evolution of MIR168 paralogs in Brassicaceae. BMC Evol Biol 9:62PubMedCrossRefGoogle Scholar
  10. Gonzalez-Ibeas D, Blanca J, Donaire L, Saladie M, Mascarell-Creus A, Cano-Delgado A, Garcia-Mas J, Llave C, Aranda M (2011) Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing. BMC Genom 12:393CrossRefGoogle Scholar
  11. Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296PubMedCrossRefGoogle Scholar
  12. Hewezi T, Howe P, Maier TR, Baum TJ (2008) Arabidopsis small RNAs and their targets during cyst nematode parasitism. Mol Plant Microbe Interact 21:1622–1634PubMedCrossRefGoogle Scholar
  13. Jagadeeswaran G, Nimmakayala P, Zheng Y, Gowdu K, Reddy UK, Sunkar R (2012) Characterization of the small RNA component of leaves and fruits from four different cucurbit species. BMC Genom 13:329CrossRefGoogle Scholar
  14. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol cell 14:787–799. doi: 10.1016/j.molcel.2004.05.027 PubMedCrossRefGoogle Scholar
  15. Jung J-H, Park C-M (2007) 165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta 225:1327–1338. doi: 10.1007/s00425-006-0439-1 PubMedCrossRefGoogle Scholar
  16. Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H (2007) A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev 21:1–12. doi: 10.1101/gad.1595107 CrossRefGoogle Scholar
  17. Kim V (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385PubMedCrossRefGoogle Scholar
  18. Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101:12753–12758PubMedCrossRefGoogle Scholar
  19. Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322. doi: 10.1242/dev.01320 PubMedCrossRefGoogle Scholar
  20. Liu W-M, Pang RTK, Cheong AWY, Ng EHY, Lao K et al (2012) Involvement of microRNA Lethal-7a in the regulation of embryo implantation in mice. PLoS One 7:e37039. doi: 10.1371/journal.pone.0037039 PubMedCrossRefGoogle Scholar
  21. Lu C, Fedoroff N (2000) A mutation in the arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12:2351–2366. doi: 10.1105/tpc.12.12.2351 PubMedGoogle Scholar
  22. Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5[prime] region. EMBO J 23:3356–3364PubMedCrossRefGoogle Scholar
  23. Martin RC, Liu P-P, Goloviznina NA, Nonogaki H (2010) microRNA, seeds, and Darwin?: diverse function of miRNA in seed biology and plant responses to stress. J Exp Bot 61:2229–2234. doi: 10.1093/jxb/erq063 PubMedCrossRefGoogle Scholar
  24. Martínez G, Forment J, Llave C, Pallás V, Gómez G (2011) High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs. PLoS One 6:19523. doi: 10.1371/journal.pone.0019523 CrossRefGoogle Scholar
  25. Mohorianu I, Schwach F, Jing R, Lopez-Gomollon S, Moxon S, Szittya G, Sorefan K, Moulton V, Dalmay T (2011) Profiling of short RNAs during fleshy fruit development reveals stage-specific sRNAome expression patterns. Plant J 67:232–246PubMedCrossRefGoogle Scholar
  26. Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609. doi: 10.1101/gr.080127.108 PubMedCrossRefGoogle Scholar
  27. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones J (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439PubMedCrossRefGoogle Scholar
  28. Pandey SP, Shahi P, Gase K, Baldwin IT (2008) Herbivory-induced changes in the small-RNA transcriptome and phytohormone signaling in Nicotiana attenuate. Proc Natl Acad Sci U S A 105:4559–4564PubMedCrossRefGoogle Scholar
  29. Perez-Llamas C, Lopez-Bigas N (2011) Gitools: analysis and visualisation of genomic data using interactive heat-maps. PLoS One 6:e19541. doi: 10.1371/journal.pone.0019541 PubMedCrossRefGoogle Scholar
  30. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626. doi: 10.1101/gad.1004402 PubMedCrossRefGoogle Scholar
  31. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant MicroRNA targets. Cell 110:513–520. doi: 10.1016/s0092-8674(02)00863-2 PubMedCrossRefGoogle Scholar
  32. Sattar S, Song Y, Anstead JA, Sunkar R, Thompson GA (2012) Cucumis melo microRNA expression profile during aphid herbivory in a resistant and susceptible interaction. Mol Plant Microbe Interact 25:839–848PubMedCrossRefGoogle Scholar
  33. Schaefer H, Heibl C, Renner SS (2009) Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc Roy Soc B Biol Sci 276:843–851. doi: 10.1098/rspb.2008.1447 CrossRefGoogle Scholar
  34. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev cell 8:517–527PubMedCrossRefGoogle Scholar
  35. Sieber P, Wellmer F, Gheyselinck J, Riechmann JL, Meyerowitz EM (2007) Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 134:1051–1060. doi: 10.1242/dev.02817 PubMedCrossRefGoogle Scholar
  36. Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu J-K, Yu O (2008) Novel and nodulation-regulated microRNAs in soybean roots. BMC Genom 9:160CrossRefGoogle Scholar
  37. Sunkar R (2010) MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol 21:805–811. doi: 10.1016/j.semcdb.2010.04.001 PubMedCrossRefGoogle Scholar
  38. Sunkar R, Zhu J-K (2004) Novel and stress-regulated MicroRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019. doi: 10.1105/tpc.104.022830 PubMedCrossRefGoogle Scholar
  39. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065. doi: 10.1105/tpc.106.041673 PubMedCrossRefGoogle Scholar
  40. Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63. doi: 10.1101/gad.1048103 PubMedCrossRefGoogle Scholar
  41. Varkonyi-Gasic E, Wu R, Wood M, Walton E, Hellens R (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Meth 3:12CrossRefGoogle Scholar
  42. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687PubMedCrossRefGoogle Scholar
  43. Wang F, Liu R, Wu G, Lang C, Chen J, Shi C (2012) Specific downregulation of the bacterial-type PEPC gene by artificial microRNA improves salt tolerance in Arabidopsis. Plant Mol Biol Rep. doi: 10.1007/s11105-012-0418-6
  44. Wu G, Park M, Conway S, Wang J, Weigel D, Poethig R (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759PubMedCrossRefGoogle Scholar
  45. Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789. doi: 10.1016/s0960-9822(03)00281-1 PubMedCrossRefGoogle Scholar
  46. Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC (2005) Expression of Arabidopsis MIRNA genes. Plant Physiol 138:2145–2154. doi: 10.1104/pp. 105.062943 PubMedCrossRefGoogle Scholar
  47. Xue L-J, Zhang J-J, Xue H-W (2009) Characterization and expression profiles of miRNAs in rice seeds. Nucleic Acids Res 37:916–930. doi: 10.1093/nar/gkn998 PubMedCrossRefGoogle Scholar
  48. Yang Y, Chen X, Chen J, Xu H, Li J, Zhang Z (2011) Identification of novel and conserved microRNAs in Rehmannia glutinosa L. by Solexa sequencing. Plant Mol Biol Rep 29:986–996CrossRefGoogle Scholar
  49. Zhou J, Zhuo R, Liu M, Qiao G, Jiang J, Li H, Qiu W, Zhang X, Lin S (2011) Identification and characterization of novel microRNAs from Populus cathayana. Rehd Plant Mol Biol Rep 29:242–2511CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sumanth Manohar
    • 1
  • Guru Jagadeeswaran
    • 2
  • Padma Nimmakayala
    • 1
  • Yan Tomason
    • 1
    • 4
  • Aldo Almeida
    • 1
  • Ramanjulu Sunkar
    • 2
  • Amnon Levi
    • 3
  • Umesh K. Reddy
    • 1
  1. 1.Gus R. Douglass Institute, Department of BiologyWest Virginia State UniversityInstituteUSA
  2. 2.Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterUSA
  3. 3.U. S. Vegetable Laboratory, USDA-ARSCharlestonUSA
  4. 4.Dnipropetrovsk State Agrarian UniversityDnipropetrovskUkraine

Personalised recommendations