Plant Molecular Biology Reporter

, Volume 31, Issue 1, pp 231–239 | Cite as

Development and Characterization of Genomic and Gene-Based Microsatellite Markers in North American Red Oak Species

  • Alexis R. Sullivan
  • Jennifer F. Lind
  • Tim S. McCleary
  • Jeanne Romero-Severson
  • Oliver Gailing
Original Paper

Abstract

Oaks (Quercus: Fagaceae) are ecological and economic keystones of many forested ecosystems but effective genetic management strategies are hindered by high levels of phenotypic plasticity within species and frequent hybridization among them. These same features, however, make oak communities suited for the study of speciation, hybridization, and genetic adaptation. Efforts to develop new and to adapt existing genomic resources to less-studied members of this genus should not only improve oak conservation and management but also aid the study of fundamental evolutionary processes. Here, we present a suite of 27 highly polymorphic simple sequence repeat (SSR) markers tested in four North American red oak (Quercus section Lobatae) species: Q. rubra, Q. ellipsoidalis, Q. coccinea, and Q. velutina. Five markers are genomic SSRs (gSSRs) — four novel and one previously transferred from Q. petraea — and 22 are gene-based SSRs derived from Q. robur and Q. petraea expressed sequence tags (EST-SSRs). Overall, levels of polymorphism detected with these primer pairs were high, with gene diversity (He) averaging 0.66 across all loci in natural populations. In addition, we show that EST-SSR markers may have the potential to detect divergent selection at stress-resistance candidate genes among closely related oak species.

Keywords

Molecular markers Expressed sequence tags Microsatellites Quercus Red oaks SSRs Transferability Outlier loci Divergent selection 

Supplementary material

11105_2012_495_MOESM1_ESM.xlsx (18 kb)
ESM 1(XLSX 18 kb)

References

  1. Abrams MD (1988) Comparative water relationships of three successional hardwood species in central Wisconsin. Tree Physiol 4:263–273. doi:10.1093/treephys/4.3.263 PubMedCrossRefGoogle Scholar
  2. Abrams MD (1990) Adaptations and responses to drought in Quercus species of North America. Tree Physiol 7:227–238. doi:10.1093/treephys/7.1-2-3-4.227 PubMedCrossRefGoogle Scholar
  3. Aldrich PR, Cavender-Bares J (2011) Quercus. In: Kole C (ed) Wild crop relatives: Genomic and breeding resources, forest trees. Springer, Berlin, pp 89–129, doi: 10.1007/978-3-642-21250-5 CrossRefGoogle Scholar
  4. Aldrich PR, Glaubitz JC, Parker GR, Rhodes OE, Michler CH (2005) Genetic structure inside a declining red oak community in old-growth forest. J Hered 96:627–634. doi:10.1093/jhered/esi115 PubMedCrossRefGoogle Scholar
  5. Aldrich PR, Parker GR, Michler CH, Romero-Severson J (2003a) Whole-tree silvic identifications and the microsatellite genetic structure of a red oak species complex in an Indiana old-growth forest. Can J For Res 33:2228–2237. doi:10.1139/x03-160 CrossRefGoogle Scholar
  6. Aldrich PR, Jagtap M, Michler CH, Romero-Severson J (2003b) Amplification of North American red oak microsatellite markers in European white oaks and Chinese chestnut. Silvae Genet 52:176–179Google Scholar
  7. Aldrich PR, Michler CH, Sun WL, Romero-Severson J (2002) Microsatellite markers for northern red oak (Fagaceae: Quercus rubra). Mol Ecol Notes 2:472–474. doi:10.1046/j.1471-8278.2002.00282.x CrossRefGoogle Scholar
  8. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389 PubMedCrossRefGoogle Scholar
  9. Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinforma 8:323. doi:10.1186/1471-2105-9-323 CrossRefGoogle Scholar
  10. Barreneche T, Casasoli M, Russell K, Akkak A, Meddour H, Plomion C, Villani F, Kremer A (2004) Comparative mapping between Quercus and Castanea using simple-sequence repeats (SSRs). Theor Appl Genet 108:558–566PubMedCrossRefGoogle Scholar
  11. Beaumont MA (2005) Adaptation and speciation: what can Fst tell us? Trends Ecol Evol 20:435–440PubMedCrossRefGoogle Scholar
  12. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc Roc Soc B 263:1619–1626CrossRefGoogle Scholar
  13. Blue MP, Jensen RJ (1988) Positional and season variaion in oak (Quercus: Fagaceae) leaf morphology. Am J Bot 75:939–947. doi:10.2307/2443759 CrossRefGoogle Scholar
  14. Bodénès C, Joandet S, Laigret F, Kremer A (1997) Detection of genomic regions differentiating two closely related oak species Quercus petraea (Matt.) Liebl. and Quercus robur L. Heredity 78:433–444. doi:10.1038/hdy.1997.67 CrossRefGoogle Scholar
  15. Bouck A, Vision T (2007) The molecular ecologist's guide to expressed sequence tags. Mol Ecol 16:907–924. doi:10.1111/j.1365-294X.2006.03195.x PubMedCrossRefGoogle Scholar
  16. Bruschi P, Vendramin GG, Bussotti F, Grossoni P (2000) Morphological and molecular differentiation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. (Fagaceae) in Northern and Central Italy. Ann Bot 85:325–333. doi:10.1006/anbo.1999.1046 CrossRefGoogle Scholar
  17. Castillo A, Dorado G, Feuillet C, Sourdille P, Hernandez P (2010) Genetic structure and ecogeographical adaptation in wild barley (Hordeum chilense Roemer et Schultes) as revealed by microsatellite markers. BMC Plant Biol 10. doi:10.1186/1471-2229-10-266
  18. Charlesworth D (2006) Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet 2(4): e64. doi:10.1371/journal.pgen.0020064
  19. Clotfelter ED, Pedersen AB, Cranford JA, Ram N, Snajdr EA, Nolan V, Ketterson ED (2007) Acorn mast drives long-term dynamics of rodent and songbird populations. Oecologia 154:493–503. doi:10.1007/s00442-007-0859-z PubMedCrossRefGoogle Scholar
  20. Coart E, Lamote V, De Loose M, Van Bockstaele E, Lootens P, Roldan-Ruiz I (2002) AFLP markers demonstrate local genetic differentiation between two indigenous oak species Quercus robur L. and Quercus petraea (Matt.) Liebl in Flemish populations. Theor Appl Genet 105:431–439. doi:10.1007/s00122-002-0920-6 PubMedCrossRefGoogle Scholar
  21. Curtu AL, Gailing O, Finkeldey R (2007a) Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evol Biol 7:218. doi:10.1186/1471-2148-7-218 PubMedCrossRefGoogle Scholar
  22. Curtu AL, Gailing O, Leinemann L, Finkeldey R (2007b) Genetic variation and differentiation within a natural community of five oak species (Quercus spp.). Plant Biol 9:116–126. doi:10.1055/s-2006-924542 PubMedCrossRefGoogle Scholar
  23. Durand J, Bodénès C, Chancerel E, Frigero J-M, Vendramin GG, Sebastiani F, Buonamici A, Gailing O, Koelewijn H-P, Villani F, Mattioni C, Cherubini M, Goicoechea PG, Herran A, Ikaran Z, Cabane C, Ueno S, de Daruvar A, Kremer A, Plomion C (2010) A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11:570. doi:10.1186/1471-2164-11-570 PubMedCrossRefGoogle Scholar
  24. Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132. doi:10.1038/sj.hdy.6801001 PubMedCrossRefGoogle Scholar
  25. Fernández J, Sork V, Gallego G, López J, Bohorques A, Tohme J (2000) Cross-amplification of microsatellite loci in a neotropical Quercus species and standardization of DNA extraction from mature leaves dried in silica gel. Plant Mol Biol Rep 18:397–397. doi:10.1007/bf02825070 CrossRefGoogle Scholar
  26. Forkner RE, Hunter MD (2000) What goes up must come down? Nutrient addition and predation pressure on oak herbivores. Ecology 81:1588–1600. doi:10.2307/177309 CrossRefGoogle Scholar
  27. Gerwein JB, Kesseli RV (2006) Genetic diversity and population structure of Quercus rubra (Fagaceae) in old-growth and secondary forests in southern New England. Rhodora 108:1–18. doi:10.3119/05-9.1 CrossRefGoogle Scholar
  28. Guo Y, Huang C, Xie Y, Song F, Zhou X (2010) A tomato glutaredoxin gene SIGRX1 regulates plant responses to oxidative, drought and salt stresses. Planta 232:1499–1509. doi:10.1007/s00425-010-1271-1 PubMedCrossRefGoogle Scholar
  29. Guttman SI, Weigt LA (1989) Electrophoretic evidence of relationships among Quercus (oaks) of eastern North America. Can J Bot 67:339–351CrossRefGoogle Scholar
  30. Hipp AL, Weber JA (2008) Taxonomy of Hill's oak (Quercus ellipsoidalis: Fagaceae): evidence from AFLP data. Syst Bot 33:148–158. doi:10.1600/036364408783887320 CrossRefGoogle Scholar
  31. Hokanson SC, Isebrands JG, Jensen RJ, Hancock JF (1993) Isozyme variation in oaks of the Apostle Islands in Wisconsin — genetic structure and levels of inbreeding in Quercus rubra and Q. ellipsoidalis (Fagaceae). Am J Bot 80:1349–1357. doi:10.2307/2445720 CrossRefGoogle Scholar
  32. Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5:539–543. doi:10.1023/B:COGE.0000041021.91777.1a CrossRefGoogle Scholar
  33. Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189. doi:10.1111/j.1471-8286.2004.00845.x CrossRefGoogle Scholar
  34. Kremer A, Kleinschmit J, Cottrell J, Cundall EP, Deans JD, Ducousso A, Konig AO, Lowe AJ, Munro RC, Petit RJ, Stephan BR (2002) Is there a correlation between chloroplastic and nuclear divergence, or what are the roles of history and selection on genetic diversity in European oaks? For Ecol Manage 156:75–87. doi:10.1016/s0378-1127(01)00635-1 CrossRefGoogle Scholar
  35. Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland K (2004) Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet 109:361–369. doi:10.1007/s00122-004-1635-7 PubMedCrossRefGoogle Scholar
  36. Mariette S, Cottrell J, Csaikl UM, Goikoechea P, Konig A, Lowe AJ, Van Dam BC, Barreneche T, Bodénès C, Streiff R, Burg K, Groppe K, Munro RC, Tabbener H, Kremer A (2002) Comparison of levels of genetic diversity detected with AFLP and microsatellite markers within and among mixed Q. petraea (matt.) liebl. and Q. robur L. stands. Silvae Genet 51:72–79Google Scholar
  37. Maynard Smith J, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Rese 23:23–35. doi:10.1017/S0016672300014634 CrossRefGoogle Scholar
  38. McShea WJ, Healy WM, Devers P, Fearer T, Koch FH, Stauffer D, Waldon J (2007) Forestry matters: decline of oaks will impact wildlife in hardwood forests. J Wildl Manage 71:1717–1728. doi:10.219 CrossRefGoogle Scholar
  39. Moran EV, Willis J, Clark JS (2012) Genetic evidence for hybridization in red oaks (Quercus sect. Lobatae, Fagaceae). Am J Bot 99:92–100. doi:10.3732/ajb.11000233/2006-169 PubMedCrossRefGoogle Scholar
  40. Muir G, Schlötterer C (2005) Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridising oaks (Quercus spp.). Mol Ecol 14:549–561. doi:10.1111/j.1365-294X.2004.02418.x PubMedCrossRefGoogle Scholar
  41. Oldfield S, Eastwood A (2007) The red list of oaks. Fauna & Flora International Cambridge, UKGoogle Scholar
  42. Ostfeld RS, Jones CG, Wolff JO (1996) Of mice and mast. Bioscience 46:323–330. doi:10.2307/1312946 CrossRefGoogle Scholar
  43. Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859. doi:10.1038/nrg1707 PubMedCrossRefGoogle Scholar
  44. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  45. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225. doi:10.2307/2409177 CrossRefGoogle Scholar
  46. Rozen S, Skaletsky HJ (2000) PRIMER3 on the www for general users and for biologist programmers. In: Krawertz S, Misener S (eds) Bioinformatic methods and protocols: Methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  47. Scotti-Saintagne C, Mariette S, Porth I, Goicoechea PG, Barreneche T, Bodénès C, Burg K, Kremer A (2004) Genome scanning of interspecific differentiation between two closely related oak species (Quercus robur L. and Q. petraea (matt.) liebl.). Genetics 168:1615–1626. doi:10.1534/genetics.104.026849 PubMedCrossRefGoogle Scholar
  48. Slate J, Marshall TC, Pemberton JM (2000) A retrospective assessment of the accuracy of the paternity inference program CERVUS. Mol Ecol 9:801–808. doi:10.1046/j.1365-294x.2000.00930.x PubMedCrossRefGoogle Scholar
  49. Sork VL, Huang S, Wiener E (1993) Macrogeographic and fine-scale genetic structure in a North American oak species, Quercus rubra L. Ann Sci For 50(suppl 1):261s–270sCrossRefGoogle Scholar
  50. Sridha S, Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J 46:124–133. doi:10.1111/j.1365-313X.2006.02678.x PubMedCrossRefGoogle Scholar
  51. Steinkellner H, Lexer C, Turetschek E, Glössl J (2003) Conservation of (GA)n microsatellite loci between Quercus species. Mol Ecol 6:1189–1194. doi:10.1046/j.1365-294X.1997.00288.x CrossRefGoogle Scholar
  52. Tomlinson PT, Jensen RJ, Hancock JF (2000) Do whole tree silvic characters indicate hybridization in red oak (Quercus section Lobatae)? Am Midl Nat 143:154–168. doi:10.1674/0003-0031(2000)143[0154:dwtsci]2.0.co;2 CrossRefGoogle Scholar
  53. Tran L-SP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104:20623–20628. doi:10.1073/pnas.0706547105 PubMedCrossRefGoogle Scholar
  54. United Nations Economic Commission for Europe/Food and Agriculture Organization of the United Nations (UNECE/FAO) (2011) Forest products annual market review 2010–2011. Geneva timber and forest study paper 27. United Nations Publications, GenevaGoogle Scholar
  55. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Microchecker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  56. van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 6:255–256. doi:10.1111/j.1471-8286.2005.01082.x CrossRefGoogle Scholar
  57. Vasemägi A, Nilsson J, Primmer CR (2005) Expressed sequence tag-linked microsatellites as a source of gene-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.). Mol Biol Evol 22:1067–1076. doi:10.1093/molbev/msi09 PubMedCrossRefGoogle Scholar
  58. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. doi:10.2307/2408641 CrossRefGoogle Scholar
  59. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16. doi:10.1046/j.0962-1083.2001.01418.x PubMedCrossRefGoogle Scholar
  60. Zhu X, Raman H, Wu H, Lemerle D, Burrows G, Stanton R (2012) Development of SSR markers for menetic analysis of silverleaf nightshade (Solanum elaeagnifolium) and related species. Plant Mol Biol Report: 1–7. doi:10.1007/s11105-012-0473-z

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Alexis R. Sullivan
    • 1
  • Jennifer F. Lind
    • 1
  • Tim S. McCleary
    • 2
  • Jeanne Romero-Severson
    • 2
  • Oliver Gailing
    • 1
  1. 1.School of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonUSA
  2. 2.Department of Biological SciencesUniversity of Notre DameNotre DameUSA

Personalised recommendations