Skip to main content
Log in

Spatial and Temporal Expression of Cold-responsive DEAD-box RNA Helicases Reveals their Functional Roles During Embryogenesis in Arabidopsis thaliana

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

DEAD-box RNA helicases compose a large subfamily of RNA helicases found in all eukaryotes and prokaryotes. Functional DEAD-box RNA helicases are considered to be RNA chaperones that modify RNA secondary structure and perhaps three-dimensional structures during different cellular processes involving RNA metabolism. Although a relationship of DEAD-box RNA helicases to abiotic stress adaptation is known, few reports document the involvement of RNA helicases during plant growth and development. In this study, detailed analyses were performed for two cold-responsive DEAD-box RNA helicases, AtRH22 and AtRH52, on the transcript level during different developmental stages of Arabidopsis thaliana. Expression levels of AtRH22 and AtRH52 were up-regulated markedly in response to cold stress and were enriched in shoot apical meristems, floral buds, and siliques. The expression of AtRH22 and AtRH52 was spatiotemporally regulated during vegetative growth, floral transition and embryonic development. To investigate, the functional role of AtRH22 and AtRH52 in A. thaliana, we functionally characterized independent T-DNA insertion mutant lines for both genes. Genotypic analysis of self-fertilized heterozygous lines revealed only heterozygous (WT/T-DNA) and homozygous wild-type progeny for AtRH22 and AtRH52. Self-fertilized heterozygous mutants of AtRH22 and AtRH52 show normal vegetative phenotype, but produced normal-sized and abortive seeds. Collectively, these results demonstrate that the cold-responsive AtRH22 and AtRH52 genes are spatiotemporally regulated during plant development and are essential during Arabidopsis embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso J, Stepanova A, Leisse T, Kim C, Chen H, Shinn P, Stevenson D, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers C, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter D, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby W, Berry C, Ecker J (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Arciga-Reyes L, Wootton L, Kieffer M, Davies B (2006) UPF1 is required for nonsense-mediated mRNA decay (NMD) and RNAi in Arabidopsis. Plant J 47:480–489

    Article  PubMed  CAS  Google Scholar 

  • Aubourg S, Kreis M, Lecharny A (1999) The DEAD box RNA helicase family in Arabidopsis thaliana. Nucleic Acids Res 27:628–636

    Article  PubMed  CAS  Google Scholar 

  • Barton M (2010) Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Dev Biol 341:95–113

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu J-K, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639:39–55

    Article  PubMed  CAS  Google Scholar 

  • Clark S, Jacobsen S, Levin J, Meyerowitz E (1996) The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development 122:1567–1575

    PubMed  CAS  Google Scholar 

  • Cordin O, Banroques J, Tanner N, Linder P (2006) The DEAD-box protein family of RNA helicases. Gene 367:17–37

    Article  PubMed  CAS  Google Scholar 

  • Fuller-Pace F (2006) DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res 34:4206–4215

    Article  PubMed  CAS  Google Scholar 

  • Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol 124:1570–1581

    Article  PubMed  CAS  Google Scholar 

  • Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu J-K (2002) RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. P Natl Acad Sci Usa 99:11507–11512

    Article  CAS  Google Scholar 

  • Gong Z, Dong C-H, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu J-K (2005) A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17:256–267

    Article  PubMed  CAS  Google Scholar 

  • Hall M, Matson S (1999) Helicase motifs: the engine that powers DNA unwinding. Mol Microbiol 34:867–877

    Article  PubMed  CAS  Google Scholar 

  • Huang C-K, Huang L-F, Huang J-J, Wu S-J, Yeh C-H, Lu C-A (2010) A DEAD-box protein, AtRH36, is essential for female gametophyte development and is involved in rRNA biogenesis in Arabidopsis. Plant Cell Physiol 51:694–706

    Article  PubMed  CAS  Google Scholar 

  • Iost I, Dreyfus M (2006) DEAD-box RNA helicases in Escherichia coli. Nucleic Acids Res 34:4189–4197

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen S, Running M, Meyerowitz E (1999) Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 126:5231–5243

    PubMed  CAS  Google Scholar 

  • Jagessar KL, Jain C (2010) Functional and molecular analysis of Escherichia coli strains lacking multiple DEAD-box helicases. RNA 16:1386–1392

    Article  PubMed  CAS  Google Scholar 

  • Kant P, Kant S, Gordon M, Shaked R, Barak S (2007) STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol 145:814–830

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Kim KA, Oh TR, Park CM, Kang H (2008) Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 49:1563–1571

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Otegui M, Krishnakumar S, Mindrinos M, Zambryski P (2007) INCREASED SIZE EXCLUSION LIMIT 2 encodes a putative DEVH box RNA helicase involved in plasmodesmata function during Arabidopsis embryogenesis. Plant Cell 19:1885–1897

    Article  PubMed  CAS  Google Scholar 

  • Laux T, Mayer K, Berger J, Jürgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96

    PubMed  CAS  Google Scholar 

  • Linder P (2008) mRNA export: RNP remodeling by DEAD-box proteins. Curr Biol 18:297–299

    Article  Google Scholar 

  • Linder P, Owttrim G (2009) Plant RNA helicases: linking aberrant and silencing RNA. Trends Plant Sci 14:344–352

    Article  PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • McElver J, Tzafrir I, Aux G, Rogers R, Ashby C, Smith K, Thomas C, Schetter A, Zhou Q, Cushman M, Tossberg J, Nickle T, Levin J, Law M, Meinke D, Patton D (2001) Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics 159:1751–1763

    PubMed  CAS  Google Scholar 

  • Nakaminami K, Hill K, Perry S, Sentoku N, Long J, Karlson D (2009) Arabidopsis cold shock domain proteins: relationships to floral and silique development. J Exp Bot 60:1047–1062

    Article  PubMed  CAS  Google Scholar 

  • Okanami M, Meshi T, Iwabuchi M (1998) Characterization of a DEAD box ATPase/RNA helicase protein of Arabidopsis thaliana. Nucleic Acids Res 26:2638–2643

    Article  PubMed  CAS  Google Scholar 

  • Owttrim G (2006) RNA helicases and abiotic stress. Nucleic Acids Res 34:3220–3230

    Article  PubMed  CAS  Google Scholar 

  • Park S, Harada J (2008) Arabidopsis embryogenesis. Methods Mol Biol 427:3–16

    Article  PubMed  CAS  Google Scholar 

  • Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    Article  PubMed  CAS  Google Scholar 

  • Rocak S, Linder P (2004) DEAD-box proteins: the driving forces behind RNA metabolism. Nature Reviews Molecular Cell Biology, Published online: 01 December 2007; doi:10.1038/nrm2293 5: 232–241

  • Sessions A, Yanofsky M, Weigel D (1998) Patterning the floral meristem. Semin Cell Dev Biol 9:221–226

    Article  PubMed  CAS  Google Scholar 

  • Shimizu KK, Ito T, Ishiguro S, Okada K (2008) MAA3 (MAGATAMA3) helicase gene is required for female gametophyte development and pollen tube guidance in Arabidopsis thaliana. Plant Cell Physiol 49:1478–1483

    Article  PubMed  CAS  Google Scholar 

  • Stonebloom S, Burch-Smith T, Kim I, Meinke D, Mindrinos M, Zambryski P (2009) Loss of the plant DEAD-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata. Proc Natl Acad Sci U S A 106:17229–17234

    Article  PubMed  CAS  Google Scholar 

  • Sung D-Y, Kaplan F, Lee K-J, Guy C (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    Article  PubMed  CAS  Google Scholar 

  • Thomashow M (1999) PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney T, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220

    Article  PubMed  CAS  Google Scholar 

  • Umate P, Tuteja R, Tuteja N (2010) Genome-wide analysis of helicase gene family from rice and Arabidopsis: a comparison with yeast and human. Plant Mol Biol 73:449–465

    Article  PubMed  CAS  Google Scholar 

  • Vashisht A, Tuteja N (2006) Stress responsive DEAD-box helicases: a new pathway to engineer plant stress tolerance. J Photochem Photobiol B, Biol 84:150–160

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan C, Zhu J-K (2002) Molecular genetic analysis of cold-regulated gene transcription. Philos Trans R Soc Lond B Biol Sci 357:877–886

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Duby G, Purnelle B, Boutry M (2000) Tobacco VDL gene encodes a plastid DEAD box RNA helicase and is involved in chloroplast differentiation and plant morphogenesis. Plant Cell 12:2129–2142

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Alvarez J, Smyth D, Yanofsky M, Meyerowitz E (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  PubMed  CAS  Google Scholar 

  • Western T, Cheng Y, Liu J, Chen X (2002) HUA ENHANCER2, a putative DExH-box RNA helicase, maintains homeotic B and C gene expression in Arabidopsis. Development 129:1569–1581

    PubMed  CAS  Google Scholar 

  • Würschum T, Gross-Hardt R, Laux T (2006) APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem. Plant Cell 18:295–307

    Article  PubMed  Google Scholar 

  • Yoine M, Nishii T, Nakamura K (2006) Arabidopsis UPF1 RNA helicase for nonsense-mediated mRNA decay is involved in seed size control and is essential for growth. Plant Cell Physiol 47:572–580

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Dong C-H, Zhu J-K (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10:290–295

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Joseph Morton (West Virginia University) for graciously supporting our microscopy work. West Virginia Agriculture and Forestry Experiment Station Scientific Article No. 3081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale T. Karlson.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemental Table 1

List of primers used in this study (XLS 13 kb)

Supplemental Figure 1

Schematic gene diagram of AtRH22 and AtRH52. Exons and introns are represented by boxes and lines, respectively. Insertion positions of T-DNA insertion are marked with arrowheads. Primers used to determine the genotype and orientation of the T-DNA insertion are displayed (PPT 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripurani, S.K., Nakaminami, K., Thompson, K.B. et al. Spatial and Temporal Expression of Cold-responsive DEAD-box RNA Helicases Reveals their Functional Roles During Embryogenesis in Arabidopsis thaliana . Plant Mol Biol Rep 29, 761–768 (2011). https://doi.org/10.1007/s11105-010-0282-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-010-0282-1

Keyword

Navigation