Abstract
Cotton (Gossypium spp.) is an important fiber and oil crop. High soil salinity affects cotton growth and production severely. To identify genes in response to salt stress and clarify salt tolerance mechanism in cotton, suppression subtractive hybridization (SSH) libraries were constructed from cotton roots under salt stress. A total of 1,131 expressed sequence tags (ESTs) from both forward and reverse libraries were assembled into 468 uniESTs and grouped into 11 functional categories according to Gene Ontology prediction. The results showed that many physiological processes of cotton were influenced by salt stress. Some signaling elements and transcription factors, which might play important roles in salt stress response, were carefully discussed. The expression patterns of 21 selected genes under salt stress were validated by parallel method semi-quantitative reverse transcriptase-polymerase chain reaction (semi-quantitative RT-PCR), which were consistent with SSH results. An interaction network of salt-responsive genes was constructed and three molecular regulatory pathways of cotton were deduced. Our findings might result in further understanding of salt stress response in cotton and contribute to genetically modified cotton with enhanced salt tolerance.
This is a preview of subscription content, access via your institution.




References
Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21:1–30. doi:10.1080/0735-260291044160
Barthelson R, Qaisar U, Galbraith D (2010) Functional analysis of the Gossypium arboreum genome. Plant Mol Biol Report 28(2):334–343. doi:10.1007/s11105-009-0157-5
Chen N, Liu Y, Liu X, Chai J, Hu Z, Guo G, Liu H (2009) Enhanced tolerance to water deficit and salinity stress in transgenic Lycium barbarum L. plants ectopically expressing ATHK1, an Arabidopsis thaliana histidine kinase gene. Plant Mol Biol Rep 27(3):321–333. doi:10.1007/s11105-008-0084-x
Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45(2):437–448
Chinnusamy V, Zhu J, Zhu J-K (2006) Salt stress signaling and mechanisms of plant salt tolerance. In: Setlow JK (ed) Genetic engineering, vol 27. Springer, New York, pp 141–177
Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143(4):1739–1751. doi:10.1104/pp.106.094532
Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS, Li LC, Zhao CP, Cheng XG, Ma YZ (2009) A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28(2):301–311. doi:10.1007/s00299-008-0623-9
Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX (2008) Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228(1):191–201. doi:10.1007/s00425-008-0729-x
Guo YH, Yu YP, Wang D, Wu CA, Yang GD, Huang JG, Zheng CC (2009) GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol 183(1):62–75. doi:10.1111/j.1469-8137.2009.02838.x
Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499. doi:10.1146/annurev.arplant.51.1.463
Higashi K, Ishiga Y, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2008) Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Mol Genet Genomics 279(3):303–312. doi:10.1007/s00438-007-0315-0
Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32
Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103(35):12987–12992. doi:10.1073/pnas.0604882103
Huang B, Liu JY (2006) A cotton dehydration responsive element binding protein functions as a transcriptional repressor of DRE-mediated gene expression. Biochem Biophys Res Commun 343(4):1023–1031. doi:10.1016/j.bbrc.2006.03.016
Huang B, Jin L, Liu JY (2008) Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton (Gossypium hirsutum). J Plant Physiol 165(2):214–223. doi:10.1016/j.jplph.2006.11.003
Ji SJ, Lu YC, Feng JX, Wei G, Li J, Shi YH, Fu Q, Liu D, Luo JC, Zhu YX (2003) Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res 31(10):2534–2543
Jin LG, Liu JY (2008) Molecular cloning, expression profile and promoter analysis of a novel ethylene responsive transcription factor gene GhERF4 from cotton (Gossypium hirstum). Plant Physiol Biochem 46(1):46–53. doi:10.1016/j.plaphy.2007.10.004
Journot-Catalino N, Somssich IE, Roby D, Kroj T (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18(11):3289–3302. doi:10.1105/tpc.106.044149
Kadrmas JL, Beckerle MC (2004) The LIM domain: from the cytoskeleton to the nucleus. Nat Rev Mol Cell Biol 5(11):920–931. doi:10.1038/nrm1499
Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL–CIPK signaling networks. Plant Physiol 134(1):43–58. doi:10.1104/pp.103.033068
Kosmas SA, Argyrokastritis A, Loukas MG, Eliopoulos E, Tsakas S, Kaltsikes PJ (2006) Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.). Planta 223(2):329–339. doi:10.1007/s00425-005-0071-5
Li DD, Wu YJ, Ruan XM, Li B, Zhu L, Wang H, Li XB (2009) Expressions of three cotton genes encoding the PIP proteins are regulated in root development and in response to stresses. Plant Cell Rep 28(2):291–300. doi:10.1007/s00299-008-0626-6
Maas EV, Hoffman GJ (1977) Crop salt tolerance—current assessment. J Irrig Drain Div Am Soc Civ Eng 103(IR2):115–134
Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158. doi:10.1016/j.abb.2005.10.018
Matsumoto TK, Pardo JM, Takeda S, Bressan RA, Hasegawa PM (2001) Tobacco and Arabidiopsis SLT1 mediate salt tolerance of yeast. Plant Mol Biol 45(4):489–500
Meng C, Cai C, Zhang T, Guo W (2009) Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L. Plant Sci 176(3):352–359. doi:10.1016/j.plantsci.2008.12.003
Merchan F, de Lorenzo L, Rizzo SG, Niebel A, Manyani H, Frugier F, Sousa C, Crespi M (2007) Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant J 51(1):1–17. doi:10.1111/j.1365-313X.2007.03117.x
Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167(3):645–663. doi:10.1111/j.1469-8137.2005.01487.x
Ouyang B, Yang T, Li H, Zhang L, Zhang Y, Zhang J, Fei Z, Ye Z (2007) Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot 58(3):507–520. doi:10.1093/jxb/erl258
Sahi C, Agarwal M, Reddy MK, Sopory SK, Grover A (2003) Isolation and expression analysis of salt stress-associated ESTs from contrasting rice cultivars using a PCR-based subtraction method. Theor Appl Genet 106(4):620–628. doi:10.1007/s00122-002-1089-8
Sahu BB, Shaw BP (2009) Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization. BMC Plant Biol 9:69. doi:10.1186/1471-2229-9-69
Shi H, Xiong L, Stevenson B, Lu T, Zhu JK (2002) The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. Plant Cell 14(3):575–588
Song Y, Wang L, Xiong L (2009) Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta 229(3):577–591. doi:10.1007/s00425-008-0853-7
Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, Li C (2007) The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol 48(8):1148–1158. doi:10.1093/pcp/pcm088
Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15(1):141–152. doi:10.1016/j.molcel.2004.06.023
Tran LS, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci USA 104(51):20623–20628. doi:10.1073/pnas.0706547105
Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D (2009) CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J 58(5):778–790. doi:10.1111/j.1365-313X.2009.03812.x
Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438. doi:10.1016/S0076-6879(07)28024-3
Wang M, Zhang Y, Wang J, Wu X, Guo X (2007) A novel MAP kinase gene in cotton (Gossypium hirsutum L.), GhMAPK, is involved in response to diverse environmental stresses. J Biochem Mol Biol 40(3):325–332
Wang X, Dong J, Liu Y, Gao H (2010) A novel dehydration-responsive element-binding protein from Caragana korshinskii is involved in the response to multiple abiotic stresses and enhances stress tolerance in transgenic tobacco. Plant Mol Biol Rep 28(4):664–675. doi:10.1007/s11105-010-0196-y
Witzel K, Weidner A, Surabhi GK, Borner A, Mock HP (2009) Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot 60(12):3545–3557. doi:10.1093/jxb/erp198
Wu CA, Yang GD, Meng QW, Zheng CC (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45(5):600–607
Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144(3):1416–1428. doi:10.1104/pp.107.101295
Xiong L, Ishitani M (2006) Stress signal transduction: components, pathways and network integration. In: Rai AK, Takabe T (eds) Abiotic stress tolerance in plants. Springer, Dordrecht, pp 3–29. doi:10.1007/1-4020-4389-9
Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl):S165–S183
Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, Jin XF, Gao F, Fu XY, Hou XL, Yao QH (2010) AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta. doi:10.1007/s00425-010-1122-0
Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8(10):505–512. doi:10.1016/j.tplants.2003.09.004
Ye W-w, Zhao Y-l, Wang J-j, Fan B-x (2009) Construction of SSH library on root system of salinity-tolerance variety (G. hirsutum L.) under the stress of salinity. Cotton Sci 21(5):339–345
Zeng F, Zhang X, Zhu L, Tu L, Guo X, Nie Y (2006) Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol 60(2):167–183. doi:10.1007/s11103-005-3381-x
Zhang Y, Cheng J, Han Z, Xu X, Li T (2005) Comparison of methods for total RNA isolation from Malus Xiaojinensis and cDNA LD-PCR amplification. Biotech Bull 4:50–53
Zhang L, Li FG, Liu CL, Zhang CJ, Zhang XY (2009) Construction and analysis of cotton (Gossypium arboreum L.) drought-related cDNA library. BMC Res Notes 2:120. doi:10.1186/1756-0500-2-120
Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6(5):486–503. doi:10.1111/j.1467-7652.2008.00336.x
Zhou J, Li F, Wang JL, Ma Y, Chong K, Xu YY (2009) Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis. J Plant Physiol 166(12):1296–1306. doi:10.1016/j.jplph.2009.02.007
Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71. doi:10.1016/S1360-1385(00)01838-0
Zuo K, Wang J, Wu W, Chai Y, Sun X, Tang K (2005) Identification and characterization of differentially expressed ESTs of Gossypium barbadense infected by Verticillium dahliae with suppression subtractive hybridization. Mol Biol (Mosk) 39(2):214–223
Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66(6):675–683. doi:10.1007/s11103-008-9298-4
Acknowledgments
We thank Dr. Yi Huang from the Plant Biotechnology Institute, National Research Council Canada for suggestions and revision on the manuscript, and Dr. Kunbo Wang from the Cotton Research Institute, Chinese Academy of Agricultural Sciences for providing us seeds of “Zhong G5”. We are also grateful to Ms. Xiaoyan Guo for assistance on sequence blast analysis. This study was supported by China National “863” Project to J. Hua (2006AA10A108), Program for New Century Excellent Talents in University to J. Hua (NCET-06-0106), and in part by grants from Changjiang Scholars and Innovative Research Team in University, Programme of Introducing Talents of Discipline to Universities (111-2-03).
Author information
Authors and Affiliations
Corresponding authors
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Online Resource 1
Information of 468 uniESTs from forward and reverse SSH libraries (DOC 709 kb)
Online Resource 2
Ca2+ sensors and calmodulin-binding proteins identified in forward and reverse SSH libraries (DOC 44 kb)
Online Resource 3
Gene homologs of uniESTs in Arabidopsis in the interaction network (DOC 191 kb)
Rights and permissions
About this article
Cite this article
Zhang, X., Zhen, J., Li, Z. et al. Expression Profile of Early Responsive Genes Under Salt Stress in Upland Cotton (Gossypium hirsutum L.). Plant Mol Biol Rep 29, 626–637 (2011). https://doi.org/10.1007/s11105-010-0269-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11105-010-0269-y
Keywords
- Cotton
- Suppression subtractive hybridization
- Early salt response
- Signaling
- Interaction network