Skip to main content
Log in

Truncation of Medicago truncatula Auxin Conjugate Hydrolases Alters Substrate Specificity

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

We have previously isolated and characterized a family of auxin amino acid conjugate hydrolases from the legume Medicago truncatula. All characterized members of this family possess a conserved second methionine within the predicted hydrolase domain. We therefore constructed 5′-truncated clones of the hydrolases to investigate whether this methionine could have a potential function. Overall, the hydrolases exhibited altered substrate specificities towards a variety of auxin conjugates tested, with a somewhat broadened substrate range. In vitro hydrolase activity increased over wild-type in several of the shortened proteins, but only for some substrates. The 5′ “head” domain may be serving a regulatory function in the full-length versions of the enzymes or could provide a mechanism to broaden the substrate range in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  CAS  Google Scholar 

  • Bandurski RS, Cohen JD, Slovin JP, Reinecke DM (1995) Auxin biosynthesis and metabolism. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology, 2nd edn. Kluwer Academic, Boston, pp 39–65

    Google Scholar 

  • Barker DG, Bianchi S, Blondon F, Dattee Y, Duc G, Essad S, Flament P, Gallusci P, Genier G, Guy P, Muel X, Tourneur J, Denarie HT (1990) Medicago truncatula, a model plant for studying J the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol Rep 8(1):40–49

    Article  CAS  Google Scholar 

  • Bartel B, Fink G (1995) ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science 268:1745–1748

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Bitto E, Bingman CA, Bittova L, Houston NL, Boston RS, Fox BG, Philips GN (2009) X-ray structure of ILL2, an auxin-conjugate amidohydrolase from Arabidopsis thaliana. Proteins 74:61–71

    Article  PubMed  CAS  Google Scholar 

  • Campanella JJ, Ludwig-Müller J, Town CD (1996) Isolation and characterization of mutants of Arabidopsis thaliana with increased resistance to growth inhibition by indoleacetic acid-amino acid conjugates. Plant Physiol 112:735–745

    Article  PubMed  CAS  Google Scholar 

  • Campanella JJ, Bakllamaja V, Restieri T, Vomacka M, Herron J, Patterson M, Shahtaheri S (2003a) Isolation of an ILR1 auxin conjugate hydrolase homologue from Arabidopsis suecica. Plant Growth Reg 39:175–181

    Article  CAS  Google Scholar 

  • Campanella JJ, Ludwig-Müller J, Bakllamaja V, Sharma V, Cartier A (2003b) ILR1 and sILR1 IAA amidohydrolase homologues differ in expression pattern and substrate specificity. Plant Growth Reg 41:215–223

    Article  CAS  Google Scholar 

  • Campanella JJ, Larko D, Smalley J (2003c) A molecular phylogenomic analysis of the ILR1-like family of IAA amidohydrolase genes. Comp Funct Genomics 4:584–600

    Article  PubMed  CAS  Google Scholar 

  • Campanella JJ, Olajide A, Magnus V, Ludwig-Müller J (2004) A novel auxin conjugate from wheat with substrate specificity for longer side-chain auxin amide conjugates. Plant Physiol 135:2230–2240

    Article  PubMed  CAS  Google Scholar 

  • Campanella JJ, Smith SM, Leibu D, Wexler S, Ludwig-Müller J (2008) The auxin conjugate hydrolase family of Medicago truncatula and their expression during the interaction with two symbionts. J Plant Growth Reg 27(1):26–38

    Article  CAS  Google Scholar 

  • Cohen JD, Bandurski RS (1982) The chemistry and physiology of the bound auxins. Ann Rev Plant Physiol 33:403–430

    Article  CAS  Google Scholar 

  • Cook D, van der Bosch K, de Bruijin F, Huguet T (1997) Model legumes get the nod. Plant Cell 9:275–281

    Article  CAS  Google Scholar 

  • Davies RT, Goetz DH, Lasswell J, Anderson MN, Bartel B (1999) IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell 11:365–376

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Ota T (1974) On some principles governing molecular evolution. Proc Natl Acad Sci USA 71:2848–2852

    Article  PubMed  CAS  Google Scholar 

  • LeClere S, Tellez R, Rampey RA, Matsuda SPT, Bartel B (2002) Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J Biol Chem 277:20446–20452

    Article  PubMed  CAS  Google Scholar 

  • Ludwig-Müller J, Epstein E, Hilgenberg W (1996) Auxin-conjugate hydrolysis in Chinese cabbage: characterization of an amidohydrolase and its role during infection with clubroot disease. Physiol Plant 97:627–634

    Article  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Google Scholar 

  • Sambrook J, Maniatis T, Fritsch EF (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Plainview

    Google Scholar 

  • Savić B, Tomić S, Magnus V, Gruden K, Barle K, Grenković R, Ludwig-Müller J, Salopek-Sondi B (2009) Auxin amidohydrolases from Brassica rapa cleave the alanine conjugate of indolepropionic acid as a preferable substrate: a biochemical and modeling approach. Plant Cell Physiol 50(9):1587–1599

    Article  PubMed  Google Scholar 

  • Schuller A, Ludwig-Müller J (2006) A family of auxin conjugate hydrolases from Brassica rapa: characterization and expression during clubroot disease. New Phytol 171:145–158

    Article  PubMed  CAS  Google Scholar 

  • Storz JF (2009) Gene duplication and the resolution of adaptive conflict. Heredity 102:99–100

    Article  PubMed  CAS  Google Scholar 

  • Walz A, Park S, Seijin P, Slovin JP, Ludwig-Müller J, Momonoki YS, Cohen JD (2002) A gene encoding a protein modified by the phytohormone indoleacetic acid. Proc Natl Acad Sci USA 99(3):1718–1723

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Margaret and Herman Sokol Faculty Fellow Award (#07A). The technical assistance of Silvia Heinze is gratefully acknowledged. We finally wish to thank Lisa Campanella for her generous editorial help and John Smalley for his thoughts on molecular evolution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Campanella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campanella, J.J., Sigethy, S. & Ludwig-Müller, J. Truncation of Medicago truncatula Auxin Conjugate Hydrolases Alters Substrate Specificity. Plant Mol Biol Rep 29, 745–752 (2011). https://doi.org/10.1007/s11105-010-0266-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-010-0266-1

Keywords

Navigation