Skip to main content
Log in

Characterization of ADP-Glucose Pyrophosphorylase Encoding Genes in Source and Sink Organs of Maize

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

ADP-glucose pyrophosphorylase catalyzes the first and limiting step in starch biosynthesis. Six cDNA sequences encoding three large subunits and three small subunits of maize AGPase from database were mined and subsequently named: agpl1, agpl2, agpl3, agps1, agps2, and agps3. To elucidate the roles of these isogenes, a comprehensive expression analysis of the gene family was conducted by quantitative real-time RT-PCR. Based on the expression patterns, the six genes can be divided into three groups: (1) steady expressers (agpl1, agps1, and agpl2), which were expressed relatively constantly both in leaf and grain; (2) tissue and development-specific expressers (agpl3 and agps2), which were expressed only in grain at middle and late development phases; (3) tissue-specific expressers (agps3), whose transcripts kept constant during grain filling and were observed only in grain. In order to clarify the effects of sugar and plant hormone on maize AGPase genes expression, a serial of treatments were used. The results showed that AGPase genes significantly differed in response to sugar and hormone inductions. Enormous transcript changes of these genes could be observed in glucose and sucrose treatments. Interestingly, synergistic effect of ABA and sucrose on these genes was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DAP:

Day after pollination

AGPase:

ADP-glucose pyrophosphorylase

ADPG:

Adenosine diphosphate glucose

Glc-1-P:

Glucose-1-phosphate

Glc-6-P:

Glucose-6-phosphate

bt1 :

Brittle 1

sh2 :

Shrunken 2

bt2 :

Brittle 2

ABA:

Abscisic acid

BA:

N(6)-benzyladenine

2,4-D:

2,4-Dichlorophenoxyacetic acid

Pi:

Orthophosphate

PGA:

3-phosphoglycerate

References

  • Akihiro T, Mizuno K, Fujimura T (2005) Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant Cell Physiol 46(6):937–946

    Article  PubMed  CAS  Google Scholar 

  • Burton RA, Johnson PE, Beckles DM et al (2002) Characterization of the genes encoding the cytosolic and plastidial forms of ADP-glucose pyrophosphorylase in wheat endosperm. Plant Physiol 130:1464–1475

    Article  PubMed  CAS  Google Scholar 

  • Burger B, Cross J, Okita TW et al (2003) Relative turnover numbers of maize endosperm and potato tuber ADPglucose pyrophosphorylases in the absence and presence of 3-PGA. Planta 217:449–456

    Article  PubMed  CAS  Google Scholar 

  • Crevillén P, Ventriglia T, Pinto F et al (2005) Differential pattern of expression and sugar regulation of Arabidopsis thaliana ADP-glucose pyrophosphorylase-encoding genes. J Biol Chem 280:8143–8149

    Article  PubMed  Google Scholar 

  • Chen BY, Janes HW, Gianfagna T (1998) PCR cloning and characterization of multiple ADP-glucose pyrophosphorylase cDNAs from tomato. Plant Sci 136(1):59–67

    Article  PubMed  CAS  Google Scholar 

  • Cossegal M, Chambrier P, Mbelo S et al (2008) Transcriptional and metabolic adjustments in ADP-glucose pyrophosphorylase-deficient bt2 maize kernels. Plant Physiol 146(4):1553–1570

    Article  PubMed  CAS  Google Scholar 

  • Denyer K, Dunlap F, Thorbjornsen T et al (1996) The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol 112(2):779–785

    Article  PubMed  CAS  Google Scholar 

  • Dickinson DB, Preiss J (1969) Presence of ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize endosperm. Plant Physiol 44:1058–1062

    Article  PubMed  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • Frueauf JB, Ballicora MA, Preiss J (2001) Aspartate residue142 is important for catalysis by ADP-glucose pyrophosphorylase from Escherichia coli. J Biol Chem 276:46319–46325

    Google Scholar 

  • Frueauf JB, Ballicora MA, Preiss J (2003) ADP-glucose pyrophosphorylase from potato tuber: site-directed mutagenesis of homologous aspartic acid residues in the small and large subunits. Plant J 33(3):503–511

    Google Scholar 

  • Giroux M, Hannah LC (1994) ADP glucose pyrophosphorylase in shurunken-2 and brittle-2 mutants of maize. Mol Gen Genet 243:400–408

    PubMed  CAS  Google Scholar 

  • Harn CH, Bae JM, Lee SS et al (2000) Presence of multiple cDNAs encoding an isoform of ADP-glucose pyrophosphorylase large subunit from sweet potato and characterization of expression levels. Plant Cell Physiol 41(11):1235–1242

    Article  PubMed  CAS  Google Scholar 

  • Hwang SK, Hamada S, Okita TW (2006) ATP binding site in the plant ADP-glucose pyrophosphorylase large subunit. FEBS Lett 580:6741–6748

    Article  PubMed  CAS  Google Scholar 

  • Hwang SK, Hamada S, Okita TW (2007) Catalytic implications of the higher plant ADP-glucose pyrophosphorylase large subunit. Phytochemistry 68(4):464–477

    Article  PubMed  CAS  Google Scholar 

  • Kleczkowski LA, Villand P, Preiss J (1993a) Kinetic mechanism and regulation of ADP-glucose pyrophosphorylase from barley (Hordeum vulgare) leaves. J Biol Chem 268:6228–6233

    PubMed  CAS  Google Scholar 

  • Kleczkowski LA, Villand P, Luthi E et al (1993b) Insensitivity of barley endosperm ADP-glucose pyrophosphorylase to 3-phosphoglycerate and orthophosphate regulation. Plant Physiol 101(1):179–186

    Article  PubMed  CAS  Google Scholar 

  • Kwak MS, Noh SA, Oh MJ et al (2006) Two sweet potato ADP-glucose pyrophosphorylase isoforms are regulated antagonistically in response to sucrose content in storage roots. Gene 336(1):87–96

    Article  Google Scholar 

  • Muller-Rober BT, Kossmann J, Hannah LC et al (1990) one of two different ADPglucose pyropho-sphorylase genes from potato responds strongly to elevated levels of sucrose. Mol Gen Genet 224:136–146

    Article  PubMed  CAS  Google Scholar 

  • Müller-Röber B, Sonnewald U, Willmitzer L (1992) Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J 11(4):1229–1238

    PubMed  Google Scholar 

  • Ohdan T, Francisco PB, Sawada T et al (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot 56:3229–3244

    Article  PubMed  CAS  Google Scholar 

  • Preiss J (1984) Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol 38:419–458

    Article  PubMed  CAS  Google Scholar 

  • Preiss J, Ball K, Smith-White B et al (1991) Starch biosynthesis and its regulation. Biochem Soc Trans 19(3):539–547

    PubMed  CAS  Google Scholar 

  • Prioul JL, Jeannette E, Reyss A et al (1994) Expression of ADPglucose pyrophosphorylase in maize (Zea mays L.) grain and source leaf during grain filling. Plant Physiol 104:179–187

    Article  PubMed  CAS  Google Scholar 

  • Plaxton WC, Preiss J (1987) Purification and properties of nonproteolytic degraded ADPglucose pyrophosphorylase from maize endosperm. Plant Physiol 83:105–112

    Article  PubMed  CAS  Google Scholar 

  • Rösti S, Denyer K (2007) Two paralogous genes encoding small subunits of ADP-glucose pyrophosphorylase in maize, Bt2 and L2, replace the single alternatively spliced gene found in other cereal species. J Mol Evol 65(3):316–327

    Article  PubMed  Google Scholar 

  • Sivak MN, Preiss J (1998) Starch: basic science to biotechnology. In: Taylor SL (ed) Advances in Food and Nutrition Research, pp 1–199. Academic Press, San Diego, California

  • Sowokinos JR (1981) Pyrophosphorylases in Solanum tuberosum II. Catalytic properties and regulation of ADPglucose and UDPglucose pyrophosphorylase activity in potato. Plant Physiol 68:924–929

    Article  PubMed  CAS  Google Scholar 

  • Sweetlove LJ, Müller-Röber B, Willmitze L et al (1999) The contribution of adenosine 5′-diphosphoglucose pyrophosphorylase to the control of starch synthesis in potato tubers. Planta 209(3):330–337

    Article  PubMed  CAS  Google Scholar 

  • Sullivan TD (1991) Analysis Of the maize brittle-1 alleles and a defective suppressor mutator induced mutable allele. Plant Cell 3:1337–1348

    Article  PubMed  CAS  Google Scholar 

  • Sullivan TD (1995) The maize brittle 1 gene encodes amyloplast membrane poly peptides. Planta 196:477–484

    Article  PubMed  CAS  Google Scholar 

  • Shannon JC, Pien FM (1996) Nucleotides and nucleotide sugars in developing maize endosperms. Plant Physiol 110:835–843

    PubMed  CAS  Google Scholar 

  • Sokolov LN, Dejardin A, Kleczkowski LA (1998) Sugars and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsis thaliana (thale cress). Biochem J 336:681–687

    PubMed  CAS  Google Scholar 

  • Tetlow IJ, Davies EJ, Vardy KA et al (2003) Subcellular localization of ADPglucose pyrophosphorylase in developing wheat endosperm and analysis of the properties of a plastidial isoform. J Exp Bot 54(383):715–725

    Article  PubMed  CAS  Google Scholar 

  • Tobias RB, Boyer CD, Shannon JC (1992) Alterations in carbohydrate intermediates in the endosperm of starch-deficient maize (Zea mays L.) genotypes. Plant Physiol 99:146–152

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (31071354), National High Technology Research and Development Program 863 in China (‘863 program’ Grant No: 2008AA10Z123) and the National Transgenic Major Program(2009ZX08003-022B). The authors are very grateful to Professor Alan Myers and Dr. Tracie Hennen-Bierwagen (Iowa State University) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubi Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 470 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, B., Chen, J., Zhang, J. et al. Characterization of ADP-Glucose Pyrophosphorylase Encoding Genes in Source and Sink Organs of Maize. Plant Mol Biol Rep 29, 563–572 (2011). https://doi.org/10.1007/s11105-010-0262-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-010-0262-5

Keywords

Navigation