Skip to main content
Log in

Cultivar Identification and Genetic Diversity of Chinese Bayberry (Myrica rubra) Accessions Based on Fluorescent SSR Markers

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstracts

A collection of 122 Chinese bayberry accessions and one wax myrtle (Myrica cerifera L.) were analyzed with 14 polymorphic simple sequence repeats (SSRs). The average number of alleles per locus was 9.3, and polymorphism information content varied from 0.07 to 0.83, with a mean value of 0.62. The genetic relationships among the 123 accessions were analyzed using the unweighted pair-group method with arithmetic mean (UPGMA). The similarity among all the accessions, based on Dice’s coefficient, varied from 0.78 to 0.99, and 0.74 between the Chinese bayberries and wax myrtle. A set of 122 Chinese bayberries clustered into four groups, with the first group further divided into six subgroups. The accessions originating from the same geographical region were more closely related than those from different regions, although extensive gene flow has taken place. The Mantel test, used to compare similarity matrices calculated from AFLP and SSR data, showed that their combination could provide information on the genetic relationship among the Chinese bayberry accessions. Ten selected SSR markers were able to distinguish most accessions, and multiplex PCR systems were developed. In addition, we found that SSRs developed from Chinese bayberry are transferable to M. cerifera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Brenner C, Morris JW (1990) Paternity index calculations in single locus hypervariable DNA probes: validation and other studies. In: Proceedings for the International Symposium on Human Identification. Promega Corporation, Madison, USA. pp. 21–53

  • Chen KS, Xu CJ, Zhang B, Ferguson IB (2004) Red bayberry: botany and horticulture. Hortic Rev 30:83–114

    Google Scholar 

  • Cheng JY, Ye XQ, Chen JC, Liu DH, Zhou SH (2008) Nutritional composition of underutilized bayberry (Myrica rubra Sieb. et Zucc.) kernels. Food Chemistry 107:1674–1680

    Article  CAS  Google Scholar 

  • Ekué MRM, Gailing O, Finkeldey R (2009) Transferability of simple sequence repeat (SSR) markers developed in Litchi chinensis to Blighia sapida (Sapindaceae). Plant Mol Biol Report 27:570–574

    Article  Google Scholar 

  • Erickson DL, Hamrick JL (2003) Genetic and clonal diversity for Myrica cerifera along a spatiotemporal island chronosequence. Heredity 90:25–32

    Article  PubMed  CAS  Google Scholar 

  • Erickson DL, Hamrick JL, Kochert KG (2004) Ecological determinants of genetic diversity in an expanding population of the shrub Myrica cerifera. Mol Ecol 13:1655–1664

    Article  PubMed  CAS  Google Scholar 

  • Galli Z, Halász G, Kiss E, Heszky L, Dobránszki J (2005) Molecular identification of commercial apple cultivars with microsatellite markers. Hortscience 40(7):1974–1977

    CAS  Google Scholar 

  • Handa T, Kajiura I (1991) Isozyme analysis of yamamomo (Myrica rubra Sieb. Et Zucc.) cultivars. Jpn J Breed 41:203–209

    CAS  Google Scholar 

  • He Q, Li XW, Liang GL, Ji K, Guo QG, Yuan WM, Zhou GZ, Chen KS, van de Weg WE, Gao ZS (2010) Genetic diversity and identity of Chinese loquat cultiversitys/accessions (Eriobotrya japonica) using apple SSR markers. Plant Mol Biol Rep. doi:10.1007/s11105-010-0218-9

  • Jannati M, Fotouhi R, Abad AP, Salehi Z (2009) Genetic diversity analysis of Iranian citrus varieties using microsatellite (SSR) based markers. J Hortic Forest 1(7):120–125

    Google Scholar 

  • Li GL, Ling BN, Shen DX (1995) Study on the sex identification of Myrica rubra L. J Zhejiang Agric Univ 21(1):22–26 (in Chinese)

    Google Scholar 

  • Li XJ, Lv JL, Li SY (1999) Advances in bayberry of China. J Sichuan Agric Univ 17(2):224–229 (in Chinese)

    Google Scholar 

  • Lin BN, Xu LJ, Jia CL (1999) Studies on identification and classification of genomic DNA in Myrica by RAPD analysis. Acta Hortic Sin 26:221–226 (In Chinese)

    Google Scholar 

  • Mariãngela CY, Valdenice MN, Marinês B, Marcos AM (2010) Transferability and level of heterozygosity of microsatellite markers in Citrus species. Plant Mol Biol Rep. doi:10.1007/s11105-010-0241-x

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Niu SS, Xu CJ, Zhang WS, Zhang B, Li X, Wang KL, Ferguson IB, Allan AC, Chen KS (2010) Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta 231:887–899

    Article  PubMed  CAS  Google Scholar 

  • Pan H, He XH, Li YW, Guo YZ, Huang GX (2008) Genetic diversity of wild myrica resources in Guangxi analyzed by inter-simple sequence repeats (ISSR). J Fruit Sci 25:353–357 (in Chinese)

    CAS  Google Scholar 

  • Qian JL, Yu HK, Wang XM, Zhang Z (2006) Analysis of ISSR marker of primary cultivars of bayberry on ISSR marker of primary cultivars of bayberry in Jiansu and Zhejiang. J Plant Resour Environ 15:17–20 (in Chinese)

    CAS  Google Scholar 

  • Qiu YX, Fu CX, Kong HH (2002) Inter-simple sequence repeat (ISSR) analysis of different cultivars in Myrica rubra. J Agric Biotechnol 10(4):343–346 (in Chinese)

    Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc. Numerical taxonomy and multivariate analysis system, version 2.1. Exeter Software, Setauket, New York

    Google Scholar 

  • Sónia G, Paula ML, João L, Henrique GP (2009) Assessing genetic diversity in Olea europaea L. using ISSR and SSR markers. Plant Mol Biol Report 27:365–373

    Article  Google Scholar 

  • Terakawa M, Kikuchi S, Kanetani S et al (2006) Characterization of 13 polymorphic microsatellite loci for an evergreen tree, Myrica rubra. Mol Ecol Notes 6:709–711

    Article  CAS  Google Scholar 

  • Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori M, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach [Prunus persica (L.) Batsch] and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    PubMed  CAS  Google Scholar 

  • Xie XB, Qiu YY, Qi XJ, Zheng XL, Qiu LJ, Zhang YJ (2008a) Analysis of genetic difference of red bayberry cultivars in Zhejiang by RAPD and ISSR. Acta Agriculturae Zhejiangensis 20(1):1–5 (in Chinese)

    Google Scholar 

  • Xie XB, Qiu YY, Qi XJ, Zheng XL, Qiu LJ, Zhang YJ (2008b) Analysis of genetic relationship between male and female plants in Myrica rubra by RAPD and ISSR. J Fruit Sci 25:198–202 (in Chinese)

    CAS  Google Scholar 

  • Xie RJ, Li XW, Chai ML, Song LJ, Jia HJ, Wu DJ, Chen MJ, Chen KM, Aranzana MJ, Gao ZS (2010) Evaluation of the genetic diversity of Asian peach accessions using a selected set of SSR markers. Sci Hortic 125:622–629

    Article  CAS  Google Scholar 

  • Yang XQ, Liu P, Han ZF, Ni ZF, Liu WQ, Sun QX (2005) Comparative analysis of genetic diversity revealed by Genomic-SSR, EST-SSR and pedigree in wheat (Triticum asetivum L). Acta Genet Sin 32(4):406–416 (in Chinese)

    PubMed  CAS  Google Scholar 

  • Yeh FC, Yang RC, Boyle T (1999) POPGENE (Version 1.31): Microsoft Window-bases freeware for population genetic analysis, University of Alberta and the Centre for International Forestry Research

  • Ying ZT, Davenport TL, Zhang TF, Schnell RJ, Tondo CL (2009) Selection of highly informative microsatellite markers to identify pollen donors in ‘Hass’ avocado orchards. Plant Mol Biol Report 27:374–380

    Article  CAS  Google Scholar 

  • Zhang YJ, Miao SL (1999) Resources of red bayberry and its utilization in China. S China Fruits 28:24–25 (In Chinese)

    Google Scholar 

  • Zhang WS, Li X, Zheng JT, Wang GY, Sun CD, Ferguson IB, Chen KS (2008) Bioactive components and antioxidant capacity of Chinese bayberry (Myrica rubra Sieb. and Zucc.) fruit in relation to fruit maturity and postharvest storage. Eur Food Res Technol 227:1091–1097

    Article  CAS  Google Scholar 

  • Zhang SM, Gao ZS, Xu CJ, Chen KS (2009a) Genetic diversity of Chinese Bayberry (Myrica rubra Sieb. Et Zucc.) accessions revealed by amplified fragment length polymorphism. Hortscience 44(2):487–491

    Google Scholar 

  • Zhang SM, Xu CJ, Gao ZS, Chen KS, Wang YG (2009b) Development and characterization of microsatellite markers for Chinese bayberry (Myrica rubra Sieb. Et Zucc.). Conserv Genet 10:1605–1607

    Article  CAS  Google Scholar 

  • Zhuang WD, Pan YS (2001) The research progress of germplasm resources of Myrica in China. J Fujian Forest Sci Technol 28(2):54–57 (In Chinese)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Science and Technology Project of Zhejiang Province (2006 C14016 and 2009R50033), and the Special Research Fund for Public Welfare in Chinese Agriculture (contract no. 200903044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Shan Gao.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table 1

List of 122 bayberry accessions and one M. cerifera included in the study (DOC 176 kb)

Fig. 1

Map of China with the indication of the location where the different cultivars were collected (PPT 824 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, RJ., Zhou, J., Wang, GY. et al. Cultivar Identification and Genetic Diversity of Chinese Bayberry (Myrica rubra) Accessions Based on Fluorescent SSR Markers. Plant Mol Biol Rep 29, 554–562 (2011). https://doi.org/10.1007/s11105-010-0261-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-010-0261-6

Keywords

Navigation