Skip to main content
Log in

Assessing Genetic Diversity in Mexican Husk Tomato Species

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Mexico is the center of diversity of the husk tomato (Physalis L., Solanaceae), which includes a number of commercially important edible and ornamental species. Taxonomic identification is presently based on morphological characteristics, but the presence of high inter- and intraspecific morphological variation makes this task difficult. Six ISSR primers were used on eight Mexican species of Physalis to determine their utility for interspecific taxonomic discrimination and to assess their potential for inferring interspecific relationships. The six ISSR primers amplified 101 bands, with 100% polymorphism across samples. The number of bands per primer varied from 10 to 21. All primers produced different fingerprint profiles for each species, confirming the ISSR value in taxonomic discrimination. Discrimination values based on Simpson’s diversity index varied from 0.48 to 0.58. Genetic interspecific similarity values ranged from 0.20 to 0.57, and intraspecific similarity values were highest for Physalis angulata (0.71), followed by Physalis philadelphica (0.63) and Physalis lagascae (0.55). The UPGMA analysis grouped accessions of the same species together and clustered together Physalis species of similar morphological traits. Thus, ISSR markers are useful in estimating genetic relationships in Physalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Agostini G, Echeverrigaray S, Souza-Chies TT (2008) Genetic relationships among South American species of Cunila D. Royenex L. based on ISSR. Plant Syst Evol 274:135–141

    Article  Google Scholar 

  • Archibald JK, Crawford DJ, Santos-Guerra A, Mort ME (2006) The utility of automated analysis of Inter-Simple Sequence Repeat (ISSR) loci for resolving relationships in the Canary Island species of Tolpis (Asteraceae). Am J Bot 93:1154–1162

    Article  CAS  Google Scholar 

  • Arif M, Zaidi NW, Singh YP, Rizwanul-Haq QM, Singh US (2009) A comparative analysis of ISSR and RAPDS markers for study of genetic diversity in Shisham (Dalbergia sissoo). Plant Mol Biol Report 27:488–495

    Article  CAS  Google Scholar 

  • Axelius B (1996) The phylogenetic relationships of the physaloid genera (Solanaceae) based on morphological data. Am J Bot 83:118–124

    Article  Google Scholar 

  • Bornet B, Branchard M (2001) Nonanchored Inter Simple Sequence Repeat (ISSR) marker: reproducible and specific tools for genome fingerprinting. Plant Mol Biol Report 19:209–215

    Article  CAS  Google Scholar 

  • D’Arcy WG (1991) The Solanaceae since 1976, with a Review of its Biogeography. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry and evolution. Royal Botanic Gardens, Kew, pp 75–137

    Google Scholar 

  • Dillon JR, Rahman M, Yeung K (1993) Discriminatory power of typing schemes based on Simpson’s index of diversity for Neisseria gonorrhoeae. J Clin Microbiol 31:2831–2833

    PubMed  CAS  Google Scholar 

  • Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Estrada E, Martínez M (1999) Physalis (Solanoideae: Solaneae) and allied genera: I. A morphology-based cladistic analysis. In: Nee M, Lester RN, Jessop JP (eds) Solanaceae IV: advances in biology and utilization. The Royal Botanic Gardens, Kew, pp 139–160

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ge XJ, Zhang LB, Yuan YM, Hao G, Chiang TY (2005) Strong genetic differentiation of the East-Himalayan Megacodon stylophorus (Gentianaceae) detected by Inter-Simple Sequence Repeats (ISSR). Biodivers Conserv 14:849–861

    Article  Google Scholar 

  • Gilbert JE, Lewis RV, Wilkinson MJ, Caligari PDS (1998) Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor Appl Genet 98:1125–1131

    Article  Google Scholar 

  • Gomes S, Martins-Lopes P, Lopes J, Guedes-Pinto H (2009) Assessing genetic diversity in Olea europaea L. using ISSR and SSR markers. Plant Mol Biol Report 27:365–373

    Article  CAS  Google Scholar 

  • Harth-Chu E, Espejo RT, Christen R, Guzmán CA, Höfle MG (2009) Multiple-locus variable-number tandem-repeat analysis for clonal identification of Vibrio parahaemolyticus isolates by using capillary electrophoresis. Appl Environ Microbiol 75:4079–4088

    Article  PubMed  CAS  Google Scholar 

  • Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26:2465–2466

    PubMed  CAS  Google Scholar 

  • Lüdtke R, Agostini G, Sfoggia Miotto ST, Souza-Chies TT (2009) Characterizing Polygala L. (Polygalaceae) species in Southern Brazil using ISSR. Plant Mol Biol Report 28:317–323

    Article  Google Scholar 

  • Martínez M (1998) Revisión de Physalis sección Epeteiorhiza (Solanaceae). Ann Ins Biol Bot 69:71–117

    Google Scholar 

  • Martínez M (1999a) Physalis hunzikeriana (Solanaceae: Solanoideae), una nueva especie del norte de México. Kurtziana 27:383–385

    Google Scholar 

  • Martínez M (1999b) Infrageneric taxonomy of Physalis. In: Nee M, Lester RN, Jessop JP (eds) Solanaceae IV: Advances in biology and utilization. Royal Botanic Gardens, Kew, pp 275–284

    Google Scholar 

  • Martínez J, Colunga-GarcíaMarín P, Zizumbo-Villarreal D (2008) Genetic erosion and in situ conservation of Lima bean (Phaseolus lunatus L.) landraces in its Mesoamerican diversity center. Genet Resour Crop Evol. doi:10.1007/s10722-008-9314-1

  • Matos M, Pinto-Carnide O, Benito C (2001) Phylogenetic relationships among Portuguese rye based on isozyme, RAPD and ISSR markers. Hereditas 134:229–236

    Article  PubMed  CAS  Google Scholar 

  • Mort ME, Crawfordl DJ, Santos-Guerra A, Francisco-Ortega J, Esselman EJ, Wolfe AD (2003) Relationships among the Macaronesian members of Tolpis (Asteraceae: Lactuceae) based upon analyses of Inter Simple Sequence Repeat (ISSR) markers. Taxon 52:511–518

    Article  Google Scholar 

  • Nan P, Shi S, Peng S, Tiang C, Zhong Y (2003) Genetic diversity in Primula obconica (Primulaceae) from central and South-West China as revelead by ISSR Markers. Ann Bot (Lond) 91:329–333

    Article  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restrictions endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Olmstead EG, Bohs L, Migid HA, Santiago-Valentin E, García VF, Collier SM (2008) A molecular phylogeny of the Solanaceae. Taxon 57:1159–1181

    Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Pavlicek A, Hrda S, Flegr J (1999) FreeTree—Freeware program for construction of phylogenetic trees. Folia Biol (Praha) 45:97–99

    CAS  Google Scholar 

  • Petros Y, Merker A, Zeleke H (2007) Analysis of genetic diversity of Guizotia abyssinica from Ethiopia using inter simple sequence repeat markers. Hereditas 144:18–24

    Article  PubMed  Google Scholar 

  • Petros Y, Merker A, Zeleke H (2008) Analysis of genetic diversity and relationships of wild Guizotia species from Ethiopia using ISSR markers. Genet Resour Crop Evol 55:451–458

    Article  CAS  Google Scholar 

  • Prasanta KK, Srivastava PP, Awasthi AK, Raje US (2008) Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.) genetic resources available in India. Tree Genet Genomes 4:75–83

    Google Scholar 

  • Reedy MP, Sarla N, Sidiq EA (2002) Inter Simple Sequence Repeat (ISSR) polymorphism and its aplicattion in plant breeding. Euphytica 128:9–17

    Article  Google Scholar 

  • Sanguinetti C, Diaz Nieto F, Simpson AJ (1994) Rapid silver staining and recovery of PCR products separated on acrylamide gels. Biotechniques 17:915–918

    Google Scholar 

  • Seithe A, Sullivan J (1990) Hair morphology and systematic of Physalis. Plant Syst Evol 170:193–204

    Article  Google Scholar 

  • Sullivan JR (1985) Systematics of the Physalis viscosa complex. Syst Bot 10:426–444

    Article  Google Scholar 

  • Vargas-Ponce O, Martínez M, Dávila P (1999) Physalis waterfallii (Solanaceae), una especie nueva de los estados de Jalisco y Michoacán. Acta Bot Mex 48:21–26

    Google Scholar 

  • Vargas-Ponce O, Martínez M, Dávila P (2001) Two new species of Physalis (Solanaceae) endemic to Jalisco, México. Brittonia 53:505–510

    Article  Google Scholar 

  • Vargas-Ponce O, Martínez M, Dávila P (2003) La familia Solanaceae en Jalisco: el género Physalis. Colección Flora de Jalisco16. Universidad de Guadalajara, Guadalajara, pp 1–127 pp

    Google Scholar 

  • Vargas-Ponce O, Zizumbo-Villarreal D, Martínez-Castillo J, Coello-Coello J, Colunga-GarcíaMarín P (2009) Diversity and structure of landraces of agave grown for spirits under traditional agriculture: a comparison with wild populations of A. angustifolia (Agavaceae) and commercial plantations of A. tequilana. Am J Bot 96:448–457

    Article  PubMed  Google Scholar 

  • Waterfall UT, Waterfall UT (1967) Physalis in Mexico, Central America, and the West Indies. Rhodora 69:82–120, pp. 203–239; 319–329

    Google Scholar 

  • Whitson M, Manos PS (2005) Untangling Physalis (Solanaceae) from the physaloids: a two-genes phylogeny of the Physalinaeae. Syst Bot 30:216–230

    Article  Google Scholar 

  • Wolfe AD, Randle CP (2001) Relationships within and among species of the holoparasitic genus Hyobanche (Orobanchaceae) inferred from ISSR banding patterns and nucleotide sequences. Syst Bot 26:120–130

    Google Scholar 

  • Yeh FC, Boyle TJB (1999) Popgene v. 1.31. Microsoft Windows-based freeware for population analysis. University of Alberta and Centre for International Forestry Research, Edmonton

    Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank to Laura Guzman-Dávalos by comments on early manuscript draft and two anonymous revisers. The Secretaría de Educación Pública-PROMEP and Secretaria de Agricultura, Ganadería y Recursos Pesqueros-SINAREFI (P-007), both from México, granted financial support for this study to O.V.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofelia Vargas-Ponce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vargas-Ponce, O., Pérez-Álvarez, L.F., Zamora-Tavares, P. et al. Assessing Genetic Diversity in Mexican Husk Tomato Species. Plant Mol Biol Rep 29, 733–738 (2011). https://doi.org/10.1007/s11105-010-0258-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-010-0258-1

Keywords

Navigation